Statistical Study of Geomagnetic Storms during Year 1996-2007

2012 ◽  
Vol 433-440 ◽  
pp. 268-271
Author(s):  
Balveer S. Rathore ◽  
Subhash C. Kaushik ◽  
K.K. Parashar ◽  
Rammohan S. Bhadoria ◽  
Dinesh C. Gupta

A geomagnetic storm is a global disturbance in Earth’s magnetic field usually occurred due to abnormal conditions in the interplanetary magnetic field (IMF) and solar wind plasma emissions caused by various solar phenomenon. A study of 220 geomagnetic storms associated with disturbance storm time (Dst) decreases of more than -50 nT to -300 nT, observed during 1996-2007, the span of solar cycle 23. We have analyzed and studied them statistically. We find yearly occurrences of geomagnetic storm are strongly correlated with 11-year sunspot cycle, but no significant correlation between the maximum and minimum phase of solar cycle-23 have been found. It is also found that solar cycle-23 is remarkable for occurrence of Intense geomagnetic storm during its declining phase. The detailed results are discussed in this paper.

2017 ◽  
Vol 13 (S335) ◽  
pp. 65-68
Author(s):  
Nandita Srivastava ◽  
Zavkiddin Mirtoshev ◽  
Wageesh Mishra

AbstractWe have studied the consequences of interacting coronal mass ejections (CMEs) of June 13-14, 2012 which were directed towards Earth and caused a moderate geomagnetic storm with Dst index ~ −86 nT. We analysed the in-situ observations of the solar wind plasma and magnetic field parameters obtained from the OMNI database for these CMEs. The in-situ observations show that the interacting CMEs arrive at Earth with the strongest (~ 150 nT) Sudden Storm Commencement (SSC) of the solar cycle 24. We compared these interacting CMEs to a similar interaction event which occurred during November 9-10, 2012. This occurred in the same phase of the solar cycle 24 but resulted in an intense geomagnetic storm (Dst ~ −108 nT), as reported by Mishra et al. (2015). Our analysis shows that in the June event, the interaction led to a merged structure at 1 AU while in the case of November 2012 event, the interacted CMEs arrived as two distinct structures at 1 AU. The geomagnetic signatures of the two cases reveal that both resulted in a single step geomagnetic storm.


2011 ◽  
Vol 24 (4) ◽  
pp. 365-372
Author(s):  
Qi Li ◽  
Yufen Gao ◽  
Peiyu Zhu ◽  
Huaran Chen ◽  
Xiuling Zhang

Solar Physics ◽  
2016 ◽  
Vol 291 (2) ◽  
pp. 603-611 ◽  
Author(s):  
Hema Kharayat ◽  
Lalan Prasad ◽  
Rajesh Mathpal ◽  
Suman Garia ◽  
Beena Bhatt

2000 ◽  
Vol 529 (2) ◽  
pp. 1101-1114 ◽  
Author(s):  
Giuliana de Toma ◽  
Oran R. White ◽  
Karen L. Harvey

1997 ◽  
Vol 15 (6) ◽  
pp. 719-728 ◽  
Author(s):  
D. M. Willis ◽  
P. R. Stevens ◽  
S. R. Crothers

Abstract. A previous application of extreme-value statistics to the first, second and third largest geomagnetic storms per solar cycle for nine solar cycles is extended to fourteen solar cycles (1844–1993). The intensity of a geomagnetic storm is measured by the magnitude of the daily aa index, rather than the half-daily aa index used previously. Values of the conventional aa index (1868–1993), supplemented by the Helsinki Ak index (1844–1880), provide an almost continuous, and largely homogeneous, daily measure of geomagnetic activity over an interval of 150 years. As in the earlier investigation, analytic expressions giving the probabilities of the three greatest storms (extreme values) per solar cycle, as continuous functions of storm magnitude (aa), are obtained by least-squares fitting of the observations to the appropriate theoretical extreme-value probability functions. These expressions are used to obtain the statistical characteristics of the extreme values; namely, the mode, median, mean, standard deviation and relative dispersion. Since the Ak index may not provide an entirely homogeneous extension of the aa index, the statistical analysis is performed separately for twelve solar cycles (1868–1993), as well as nine solar cycles (1868–1967). The results are utilized to determine the expected ranges of the extreme values as a function of the number of solar cycles. For fourteen solar cycles, the expected ranges of the daily aa index for the first, second and third largest geomagnetic storms per solar cycle decrease monotonically in magnitude, contrary to the situation for the half-daily aa index over nine solar cycles. The observed range of the first extreme daily aa index for fourteen solar cycles is 159–352 nT and for twelve solar cycles is 215–352 nT. In a group of 100 solar cycles the expected ranges are expanded to 137–539 and 177–511 nT, which represent increases of 108% and 144% in the respective ranges. Thus there is at least a 99% probability that the daily aa index will satisfy the condition aa < 550 for the largest geomagnetic storm in the next 100 solar cycles. The statistical analysis is used to infer that remarkable conjugate auroral observations on the night of 16 September 1770, which were recorded during the first voyage of Captain Cook to Australia, occurred during an intense geomagnetic storm.


Sign in / Sign up

Export Citation Format

Share Document