Optimal Grinding Condition of ZrO2 Ferrule for Optical Fiber Connector Using the Taguchi Method

2005 ◽  
Vol 297-300 ◽  
pp. 1545-1550 ◽  
Author(s):  
Chang Min Suh ◽  
Sang Chun Kim ◽  
Jung Sik Chae

In this paper, the effects of chamfering conditions on the surface roughness of ZrO2 ferrule applied to an optical fiber connector were investigated. The mesh number of the diamond wheel, the grinding speed of the spindle, the feed rate, and the initial cutting depth during grinding chamfer were regarded as the main parameters that have an effect on the surface roughness. Among these parameters, optimal combinations for chamfering conditions were obtained by using the Taguchi method. In addition, analytic values for maximum surface roughness (Rmax) estimated by the theoretical equations which were derived from the formative model of surface roughness on the grinding chamfer were compared with those of the experiments.

Author(s):  
Do Duc Trung ◽  
Nhu-Tung Nguyen ◽  
Dung Hoang Tien ◽  
Ha Le Dang

In this study, the mutil-objective optimization was applied for the surface grinding process of SAE420 steel. The aluminum oxide grinding wheels that were grooved by 15 grooves, 18 grooves, and 20 grooves were used in the experimental process. The Taguchi method was applied to design the experimental matrix. Four input parameters that were chosen for each experiment were the number of grooves in cylinder surface of grinding wheel, workpiece velocity, feed rate, and cutting depth. Four output parameters that were measured for each experimental were the machining surface roughness, the system vibrations in the three directions (X, Y, Z). The DEAR technique was applied to determine the values of the input parameters to obtaine the minimum values of machining surface roughness and vibrations in three directions. By using this technique, the optimum values of grinding wheel groove number, workpiece velocity, feed-rate, cutting depth were 18 grooves, 15 m/min, 2 mm/stroke, and 0.005 mm, respectively. The verified experimental was performed by using the optimum values of input parameters. The validation results of surface roughness and vibrations in X, Y, Z directions were 0.826 (µm), 0.531 (µm), 0.549 (µm), and 0. 646 (µm), respectively. These results were great improved in comparing to the normal experimental results. Taguchi method and DEAR technique can be applied to improve the quality of grinding surface and reduce the vibrations of the technology system to restrain the increasing of the cutting forces in the grinding process. Finally, the research direction was also proposed in this study


2011 ◽  
Vol 487 ◽  
pp. 54-57
Author(s):  
L.P. Sun ◽  
Yu Guo Wang ◽  
Yang Yang ◽  
X.R. Yu ◽  
Bin Lin

Through the odd factor grinding experiment of microwave ferrite, the residual flexural strength and surface roughness after grinding were measured in different grinding parameters(wheel speed, feed rate, cutting depth, wheel size). The surface of microwave ferrites was observed in high magnification through an optical microscope after grinding, in order to show the variation of surface roughness in different grinding parameters. The results showed that with the increase of the surface roughness, the residual flexural strength increased.


2021 ◽  
Vol 13 (9) ◽  
pp. 168781402110449
Author(s):  
Kaiping Feng ◽  
Tianchen Zhao ◽  
Binghai Lyu ◽  
Zhaozhong Zhou

To eliminate the deep scratches on the 4H-SiC wafer surface in the grinding process, a PVA/PF composite sol-gel diamond wheel was proposed. Diamond and fillers are sheared and dispersed in the polyvinyl alcohol-phenolic resin composite sol glue, repeatedly frozen at a low temperature of −20°C to gel, then 180°C sintering to obtain the diamond wheel. Study shows that the molecular chain of polyvinyl alcohol-phenolic resin is physically cross-linked to form gel under low-temperature conditions. Tested by mechanical property testing machines, microhardness tester, and SEM. The results show that micromorphology is more uniform, the strength of the sol-gel diamond wheel is higher, the hardness uniformity is better than that of the hot pressing diamond wheel. Grinding experiments of 4H-SiC wafer were carried out with the prepared sol-gel diamond wheel. The influence of grinding speed, feed rate, and grinding depth on the surface roughness was investigated. The results showed that by using the sol-gel diamond wheel, the surface quality of 4H-SiC wafer with an average surface roughness Ra 6.42 nm was obtained under grinding wheel speed 7000 r/min, grinding feed rate 6 µm/min, and grinding depth 15 µm, the surface quality was better than that of using hot pressing diamond wheel.


2014 ◽  
Vol 1017 ◽  
pp. 495-499
Author(s):  
Ya Dong Gong ◽  
Chao Wang ◽  
Jun Cheng ◽  
Xue Long Wen ◽  
Guo Qiang Yin

Orthogonal experiments of micro mill-grinding were conducted on aluminium alloy 6061. Electroplated CBN compound tools were used in machining. Surface topography and roughness of the machined workpieces were measured and analyzed. Influence rules of radial cutting depth,feed rate and spindle speed on surface roughness in micro mill-grinding were studied. The results were compared with those in micro milling. It shows that the influence rules of processing parameters on surface roughness in micro mill-grinding are approximately same with those in micro milling. And in the same processing conditions, the surface roughness of micro mill-grinding is better than that of micro milling. The minimum value of surface roughness Ra of micro mill-grinding is 0.609μm in the experiments.


2015 ◽  
Vol 727-728 ◽  
pp. 354-357
Author(s):  
Mei Xia Yuan ◽  
Xi Bin Wang ◽  
Li Jiao ◽  
Yan Li

Micro-milling orthogonal experiment of micro plane was done in mesoscale. Probability statistics and multiple regression principle were used to establish the surface roughness prediction model about cutting speed, feed rate and cutting depth, and the significant test of regression equation was done. On the basis of successfully building the prediction model of surface roughness, the diagram of surface roughness and cutting parameters was intuitively built, and then the effect of the cutting speed, feed rate and cutting depth on the small structure surface roughness was obtained.


2011 ◽  
Vol 228-229 ◽  
pp. 458-463
Author(s):  
Ming Hai Wang ◽  
Hu Jun Wang ◽  
Zhong Hai Liu

Isotropic pyrolyric graphite (IPG) is a new kind of brittle material, it not only has the general advantages of ordinal carbonaceous materials such as high temperature resistance, lubrication and abrasion resistance, but also has the advantages of impermeability and machinability that carbon/carbon composite doesn’t have. So it can be used for sealing the aeronautics and astronautics engines turbine shaft and the ethylene high-temperature equipment. The mechanism of this material removal during the precision cutting was analyzed by using the theory of strain gradient. The critical cutting thickness of IPG was calculated for the first time. Furthermore, the cutting process parameters such as cutting depth and feed rate which corresponding to the scale of brittle-ductile transition deformation of IPG was calculated. The prediction model of surface roughness in precision cutting of IPG was developed based on the Genetic algorithm. Using the surface roughness prediction model, the study investigates the influence of the cutting speed, the feed rate and the cutting depth on surface roughness in precision turning process was researched.


2019 ◽  
Vol 4 (8) ◽  
pp. 11-14
Author(s):  
Nguyen Hong Son ◽  
Hoang Xuan Thinh ◽  
Nhu-Tung Nguyen ◽  
Do Duc Trung

This paper presented the experimental results about investigation of the influence of the cutting conditions on the surface roughness when hole turning the SCM400 steel. Three cutting paramesters that have mentioned in this study included cutting speed, axial feed rate, and cutting depth. The experimental design was chosen following the orthogonal matrix and added the center experiment points. The analyzed results show that the axial feed rate has the greatest degree of impact on the surface roughness. And, the second and third factors have negligible effect on the surface roughness that are cutting speed and cutting depth, respectively. These results will guide the determination of the cutting conditions in order to machining the part surface with roughness that was ensured the setting requirement. Finally, the directions for further research were also mentioned in this paper.


Author(s):  
Xiao-fen Liu ◽  
Wen-hu Wang ◽  
Rui-song Jiang ◽  
Yi-feng Xiong ◽  
Kun-yang Lin ◽  
...  

Abstract The current state of surface roughness focuses on the 2D roughness. However, there are shortcomings in evaluating surface quality of particle reinforced metal matrix composites using 2D roughness due to the fact that the measuring direction has a vital impact on the 2D roughness value. It is therefore of great importance and significance to develop a proper criterion for measuring and evaluating the surface roughness of cutting particle reinforced metal matrix composites. In this paper, an experimental investigation was performed on the effect of cutting parameters on the surface roughness in cutting in-situ TiB2/7050Al MMCs. The 2D roughness Ra, 3D roughness Sa and Sq were comparatively studied for evaluating the machined surface quality of in-situ TiB2/7050Al MMCs. The influence of cutting parameters on the surface roughness was also analyzed. The big difference between roughness Ra measured along cutting and feed directions showed the great impact of measuring direction. Besides, surface defects such as pits, grooves, protuberances and voids were observed, which would influence 2D roughness value greatly, indicating that 3D roughness was more suitable for evaluating surface quality of cutting in-situ TiB2/7050Al MMCs. The cutting depth and feed rate were found to have the highest influence on 3D roughness while the effect of cutting speed was minimal. With increasing feed rate, cutting depth or width, the 3D roughness increased accordingly. But it decreased as cutting speed increased.


2020 ◽  
Vol 62 (9) ◽  
pp. 957-961
Author(s):  
Nursel Altan Özbek ◽  
Metin İbrahim Karadag ◽  
Onur Özbek

Abstract This paper presents the effect of cutting tool, cutting speed and feed rate on the flank wear and surface roughness of austenitic stainless steel (AISI 304) during wet turning. Turning tests were designed based on the Taguchi method (L18). An orthogonal array, the signal-to-noise ratio (S/N) and the ANOVA were used to investigate the machinability of AISI 304 stainless steel with PVD and CVD coated tungsten carbide inserts. As a result of ANOVA, it was found that the feed rate was the most effective parameter on both flank wear and surface roughness.


Sign in / Sign up

Export Citation Format

Share Document