Experience of High-Density Polyethylene as a Binding Substance in Grinding Wheels

2021 ◽  
Vol 1037 ◽  
pp. 209-217
Author(s):  
Aleksandr Korotkov ◽  
Vitalii A. Korotkov ◽  
Vasilii Fedorov ◽  
Stefan Vöth

The possibility and efficiency of the use of high-density polyethylene as a binding substance in grinding wheels for cutting-off, as well as for finish cylindrical grinding, is researched. It is determined that: - breaking mechanical strength of such circles ensures their safe operation at maximum operating speeds of 30–35 m/sec; - the use of high-density polyethylene as a binding substance in cutting wheels is not advisable, due to intensive wear and low cutting power of these tools; - wheels for finish cylindrical grinding on the basis of high-density polyethylene and hollow spherocorundum as abrasive grains in a number of key indicators (cutting power, roughness of machined surfaces) are highly competitive with grinding wheels on a bakelite bond or are comparable to them, and significantly exceed the latter in terms of wear resistance.

Author(s):  
Songbo Xu ◽  
Aydar Akchurin ◽  
X. W. Tangpong ◽  
Tian Liu ◽  
Weston Wood ◽  
...  

High density polyethylene (HDPE) is widely used as bearing material in industrial application because of its low friction and high wear resistance properties. Carbon nanofiber (CNF) reinforced HDPE nanocomposites are promising materials for biomedical applications as well, such as being the bearing materials in total joint replacements. The main objective of the present study is to investigate how the wear of HDPE can be altered by the addition of either pristine or silane treated CNFs at different loading levels (0.5 wt.% and 3 wt.%). Two types of silane coating thicknesses, 2.8 nm and 46 nm, were applied on the surfaces of oxidized CNFs to improve the interfacial bonding strength between the CNFs and the matrix. The CNF/HDPE nanocomposites were prepared through melt mixing and hot-pressing. The coefficients of friction (COFs) and wear rates of the neat HDPE and CNF/HDPE nanocomposites were determined using a pin-on-disc tribometer under dry sliding conditions. The microstructures of the worn surfaces of the nanocomposites were characterized using both scanning electron microscope (SEM) and optical microscope to analyze their wear mechanisms. Compared with the neat HDPE, the COF of the nanocomposites were reduced. The nanocomposite reinforced with CNFs coated with the thicker silane coating (46 nm) at 0.5 wt.% loading level was found to yield the highest wear resistance with a wear rate reduction of nearly 68% compared to the neat HDPE.


Wear ◽  
2014 ◽  
Vol 309 (1-2) ◽  
pp. 43-51 ◽  
Author(s):  
Tian Liu ◽  
Bin Li ◽  
Brooks Lively ◽  
Allen Eyler ◽  
Wei-Hong Zhong

Author(s):  
Yu. M. Zubarev ◽  
A. V. Priemyshev

One of the main performance indicators of grinding wheels is their wear resistance, which is largely determined by the wear resistance of abrasive grains. Data on the influence of physical and mechanical properties of the material of blanks and the material of abrasive grains, together with technological factors, on the micro-cutting process are presented. The influence of the cutting speed on the intensity and character of wear of abrasive grains is shown.


2003 ◽  
Vol 774 ◽  
Author(s):  
Susan M. Rea ◽  
Serena M. Best ◽  
William Bonfield

AbstractHAPEXTM (40 vol% hydroxyapatite in a high-density polyethylene matrix) and AWPEX (40 vol% apatite-wollastonite glass ceramic in a high density polyethylene matrix) are composites designed to provide bioactivity and to match the mechanical properties of human cortical bone. HAPEXTM has had clinical success in middle ear and orbital implants, and there is great potential for further orthopaedic applications of these materials. However, more detailed in vitro investigations must be performed to better understand the biological interactions of the composites and so the bioactivity of each material was assessed in this study. Specifically, the effects of controlled surface topography and ceramic filler composition on apatite layer formation in acellular simulated body fluid (SBF) with ion concentration similar to those of human blood plasma were examined. Samples were prepared as 1 cm × 1 cm × 1 mm tiles with polished, roughened, or parallel-grooved surface finishes, and were incubated in 20 ml of SBF at 36.5 °C for 1, 3, 7, or 14 days. The formation of a biologically active apatite layer on the composite surface after immersion was demonstrated by thin-film x-ray diffraction (TF-XRD), environmental scanning electron microscopy (ESEM) imaging and energy dispersive x-ray (EDX) analysis. Variations in sample weight and solution pH over the period of incubation were also recorded. Significant differences were found between the two materials tested, with greater bioactivity in AWPEX than HAPEXTM overall. Results also indicate that within each material the surface topography is highly important, with rougher samples correlated to earlier apatite formation.


Sign in / Sign up

Export Citation Format

Share Document