Multiscale Magnetic Anisotropy in Amorphous Ferromagnetic Ribbon: An Example of FeCuNdSiB Alloy

2020 ◽  
Vol 312 ◽  
pp. 275-280
Author(s):  
Nikita Ilin ◽  
Sergey Komogortsev ◽  
Vitaliy Ivanov ◽  
Galina S. Kraynova ◽  
Alexander Davydenko ◽  
...  

An understanding of the magnetic properties in an amorphous alloy requires comprehensive studies of magnetic anisotropy at various scales. In this paper such a study is carried out using amorphous ribbons FeCuNbSiB. The magnetic anisotropy associated with the rolling axis of ribbons does not affect hysteresis loop measurements, but the disappearance of a fingerprint-like pattern in the domain structure occurs in different fields when they are applied along and transverse the rolling axis. A correlation between the local magnetic anisotropy constant and the nanoscale within which the local easy axis is ordered was found.

Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3860
Author(s):  
Chen Cheng ◽  
Jianfeng Dai ◽  
Zengpeng Li ◽  
Wei Feng

The morphology of magnetic materials has a great influence on the properties, which is attributed to the magnetic anisotropy of the materials. Therefore, it is worth studying the fabrication of the aligned fiber and the change of its domain distribution. Nanoparticles and nanofibers were prepared by the hydrothermal and electrospinning methods, respectively. At the same time, the arranged nanofibers were collected by the drum collecting device. After the same annealing at 700 °C, it was found that the diameter of fibers collected by different collecting drums is similar. By studying the hysteresis loops of nanoarrays, it was found that they had strong anisotropy. The easy axis was parallel to the long axis, the Hc and Mr of the easy axis and the hard axis were 1330.5 Oe, 32.39 Am2/kg, and 857.2 Oe, 24.8 Am2/kg, respectively. Due to the anisotropy of the shape and the interaction between the particles, the Hc could not be enhanced. Therefore, the Ms and Hc of the nanoparticles were 80.23 Am2/kg and 979.3 Oe, respectively. The hysteresis loop and the change of magnetic moment during the demagnetization of the CoFe2O4 nanofiber array were simulated via micromagnetic software. The simulated Hc was 1480 Oe, which was similar to the experimental value.


2019 ◽  
Vol 61 (6) ◽  
pp. 1107
Author(s):  
В.С. Русаков ◽  
В.С. Покатилов ◽  
А.С. Сигов ◽  
А.А. Белик ◽  
М.Е. Мацнев

AbstractThe results of a Mössbauer study of the magnetic structure of multiferroic BiFe_0.80Cr_0.20O_3 in the temperature range of 5–550 K are presented. It is found that a collinear antiferromagnetic structure of the G type is present in BiFe_0.80Cr_0.20O_3 at temperatures below 260 K. Above 260 K, an anharmonic spin wave with a magnetic anisotropy of the easy-axis type with a high value of the anharmonicity parameter m arises. With a further increase in the temperature, the m parameter decreases and tends to zero at T ~ 420 K, at which a harmonic spin wave comes into existence. Above a temperature of about 420 K, the m parameter increases again and the spin wave becomes anharmonic with an easy-plane magnetic anisotropy. At the Néel temperature, T _N = 505 ± 10 K, the sample undergoes a transition from the magnetically ordered to the paramagnetic state. The change in the type of magnetic anisotropy at T ~ 420 K is explained by competing contributions of different signs to the effective magnetic anisotropy constant and their different temperature dependence for the BiFe_0.80Cr_0.20O_3 multiferroic.


1999 ◽  
Vol 32 (1-4) ◽  
pp. 289-294
Author(s):  
V. A. Lukshina ◽  
N. V. Dmitrieva ◽  
A. P. Potapov

For nanocrystalline alloy Fe73.5Cu1Nb3Si13.5B9 thermomechanical treatment was carried out simultaneously with nanocrystallizing annealing (1) or after it (2). It was shown that a change in magnetic properties for the case 1 is essentially greater than for the case 2. Complex effect of thermomagnetic and thermomechanical treatments on magnetic properties was studied in the above-mentioned nanocrystalline alloy as well as in the amorphous alloy Fe5Co70.6Si15B9.4., During the annealings both field and stress were aligned with the long side of the specimens. It was shown that the magnetic field, AC or DC, decreases an effect of loading. Moreover, the magnetic field, AC or DC, applied after stress-annealing can destroy the magnetic anisotropy already induced under load.


CrystEngComm ◽  
2020 ◽  
Vol 22 (13) ◽  
pp. 2297-2303 ◽  
Author(s):  
Yuewei Wu ◽  
Jing Xi ◽  
Jinhui Yang ◽  
Weiming Song ◽  
Shuchang Luo ◽  
...  

Coligand effects lead to two mononuclear octahedral Co(ii) complexes exhibiting easy-axis magnetic anisotropies and distinct magnetic properties.


2014 ◽  
Vol 215 ◽  
pp. 409-414 ◽  
Author(s):  
Mikhail N. Dubovik ◽  
Vladimir V. Zverev ◽  
Boris N. Filippov

The domain structure dependence on the uniaxial anisotropy constant has been considered in a micrometer-thick film by means of the two-dimensional micromagnetic simulation. The film has both uniaxial and tetra-axial magnetic anisotropies. The new type domain structures and walls caused by the tetra-axial anisotropy presence are predicted.


Sign in / Sign up

Export Citation Format

Share Document