Desert Research Institute

Author(s):  
Robin K. Dillow
Science ◽  
1968 ◽  
Vol 161 (3844) ◽  
pp. 866-869 ◽  
Author(s):  
P. M. Boffey

2021 ◽  
Vol 14 (5) ◽  
pp. 3217-3231
Author(s):  
Xiaolu Zhang ◽  
Krystyna Trzepla ◽  
Warren White ◽  
Sean Raffuse ◽  
Nicole Pauly Hyslop

Abstract. Thermal–optical analysis (TOA) is a class of methods widely used for determining organic carbon (OC) and elemental carbon (EC) in atmospheric aerosols collected on filters. Results from TOA vary not only with differences in operating protocols for the analysis, but also with details of the instrumentation with which a given protocol is carried out. Three models of TOA carbon analyzers have been used for the IMPROVE_A protocol in the past decade within the Chemical Speciation Network (CSN). This study presents results from intercomparisons of these three analyzer models using two sets of CSN quartz filter samples, all analyzed using the IMPROVE_A protocol with reflectance charring correction. One comparison was between the Sunset model 5L (Sunset) analyzers and the Desert Research Institute (DRI) model 2015 (DRI-2015) analyzers using 4073 CSN samples collected in 2017. The other comparison was between the Sunset and the DRI model 2001 (DRI-2001) analyzers using 303 CSN samples collected in 2007. Both comparisons showed a high degree of inter-model consistency in total carbon (TC) and the major carbon fractions, OC and EC, with a mean bias within 5 % for TC and OC and within 12 % for EC. Relatively larger and diverse inter-model discrepancies (mean biases of 5 %–140 %) were found for thermal subfractions of OC and EC (i.e., OC1–OC4 and EC1–EC3), with better agreement observed for subfractions with higher mass loadings and smaller within-model uncertainties. Optical charring correction proved critical in bringing OC and EC measurements by different TOA analyzer models into agreement. Appreciable inter-model differences in EC between Sunset and DRI-2015 (mean bias ±SD of 21.7 %±12.2 %) remained for ∼5 % of the 2017 CSN samples; examination of these analysis thermograms revealed that the optical measurement (i.e., filter reflectance and transmittance) saturated in the presence of strong absorbing materials on the filter (e.g., EC), leaving an insufficient dynamic range for the detection of carbon pyrolysis and thus no optical charring correction. Differences in instrument parameters and configuration, possibly related to disagreement in OC and EC subfractions, are also discussed. Our results provide a basis for future studies of uncertainties associated with the TOA analyzer model transition in assessing long-term trends of CSN carbon data. Further investigations using these data are warranted, focusing on the demonstrated inter-model differences in OC and EC subfractions. The within- and inter-model uncertainties are useful for model performance evaluation.


BioScience ◽  
1968 ◽  
Vol 18 (4) ◽  
pp. 293-297 ◽  
Author(s):  
Frits Went

2021 ◽  
Vol 22 (1) ◽  
pp. 27-34
Author(s):  
Carlos Alvarado ◽  
Alexander Leandro ◽  
Douglas Sarango

El objetivo del presente trabajo fue la obtención de índices de vegetación usando las imágenes satelitales Landsat en el tope de la atmosfera (TOA). La extensión de inuencia del Proyecto Especial Autoridad del Majes (AUTODEMA), que abarca las Pampas de Majes - Siguas, en Arequipa - Perú, desde 1984 hasta 2018. Para lo cual se hizo uso de la aplicación de computación en la nube ClimateEngine en la base de datos de Google Earth Engine (GEE), a escala Petabyte (PB). Se usó la herramienta llamada Climate Engine desarrollada por investigadores de la Universidad de Idaho y Desert Research Institute - DRI. Permitiendo el procesamiento vía web las imágenes satelitalesde la Misión Landsat, extraer valores de las diversas bandas, dentro de un grillado, para poder determinar los Índices de Vegetación tales como NDVI, NDWI, SAVI, GNDVI, obteniendo una serie de tiempo dentro delaextensión de estudio del AUTODEMA y poder estimar la cantidad y el grado de desarrollo de las especies vegetalessembradas y su impacto en el uso del agua mediante transvase desde la cuenca del rio Camaná hacia las Pampas de Majes-Siguas, ampliando la frontera agrícola.


Sign in / Sign up

Export Citation Format

Share Document