Intrinsic Parameters and Bacterial Growth Prediction in a Brazilian Minimally Ripened Cheese (Coalho) during Refrigerated Storage

2018 ◽  
Vol 81 (11) ◽  
pp. 1800-1809 ◽  
Author(s):  
MAIARA DA COSTA LIMA ◽  
MARIA LÚCIA DA CONCEIÇÃO ◽  
DONALD W. SCHAFFNER ◽  
EVANDRO LEITE DE SOUZA

ABSTRACT This study evaluated the microbiological and physicochemical characteristics in different commercial brands of a Brazilian minimally ripened (coalho) cheese during 60 days of storage under refrigeration. Combinations of maximum and minimum values of water activity and pH determined in cheese samples at refrigeration temperature (7°C) were used in a bacterial growth prediction analysis. Maximum growth rate (Grmax) was estimated for different pathogenic and/or spoilage bacteria using the ComBase Predictor. Results of microbiological characterization analyses showed persistent high counts for all monitored microbial groups (Lactobacillus spp., Lactococcus spp., Enterococcus spp., Staphylococcus spp., Enterobacteriaceae, proteolytic and lipolytic microorganisms, and fungi) in cheese samples; no dominant microbial group was observed over time. Values of pH (6.03 ± 0.16 to 7.28 ± 0.55), acidity (0.15% ± 0.09% to 0.66% ± 0.26%), sodium chloride (1.05% ± 0.19% to 1.97% ± 0.75%), and water activity (0.948 ± 0.020 to 0.974 ± 0.012) did not vary in cheese samples during storage. Estimated Grmax values for the tested bacteria were in the range of 0.004 to 0.044 log CFU/h. Highest Grmax values (0.005 to 0.044 log CFU/h) were predicted for the psychrotrophic Aeromonas hydrophila, Listeria monocytogenes, Pseudomonas spp., and Yersinia enterocolitica. Grmax values predicted for Escherichia coli, Salmonella spp., and Staphylococcus aureus were in the range of 0.004 to 0.016 log CFU/h. These results indicate unsatisfactory microbiological characteristics of commercially available coalho cheese. Physicochemical characteristics of commercial coalho cheese stored under refrigeration allow bacterial growth to occur, indicating higher risk for fast growth of contaminant bacteria in this product.

2018 ◽  
Author(s):  
Mario E. Muscarella ◽  
Xia Meng Howey ◽  
Jay T. Lennon

AbstractBacterial growth efficiency (BGE) is the proportion of assimilated carbon that is converted into biomass and reflects the balance between growth and energetic demands. Often measured as an aggregate property of the community, BGE is highly variable within and across ecosystems. To understand this variation, we first identified how species identity and resource type affect BGE using 20 bacterial isolates belonging to the phylum Proteobacteria that were enriched from north temperate lakes. Using a trait-based approach that incorporated genomic and phenotypic information, we characterized the metabolism of each isolate and tested for predicted trade-offs between growth rate and efficiency. A substantial amount of variation in BGE could be explained at both broad (i.e., order, 20 %) and fine (i.e., strain, 58 %) taxonomic levels. While resource type was a relatively weak predictor across species, it explained > 60 % of the variation in BGE within a given species. Furthermore, a metabolic trade-off (between maximum growth rate and efficiency) and genomic features revealed that BGE is a predictable metabolic feature. Our study suggests that genomic and phylogenetic information may help predict aggregate microbial community functions like BGE and the fate of carbon in ecosystems.Originality and SignificanceBacterial growth efficiency (BGE) is an important yet notoriously variable measure of metabolism that has proven difficult to predict. To better understand how assimilated carbon is allocated, we explored growth efficiency across a collection of bacteria strains using a trait-based approach. Specifically, we measured respiration and biomass formation rates for populations grown in minimal media containing one of three carbon resources. In addition, we collected a suite of physiological traits to describe each strain, and we sequenced the genome of each organism. Our results suggest that species identity and resource type may contribute to growth efficiency when measured as an aggregate property of a natural community. In addition, we identified genomic pathways that are associated with elevated BGE. The findings have implications for integrating microbial metabolism from the cellular to ecosystem scale.


2021 ◽  
Vol 13 (4) ◽  
pp. 2216
Author(s):  
Najeeha Mohd Apandi ◽  
Mimi Suliza Muhamad ◽  
Radin Maya Saphira Radin Mohamed ◽  
Norshuhaila Mohamed Sunar ◽  
Adel Al-Gheethi ◽  
...  

The present study aimed to optimize the production of Scenedesmus sp. biomass during the phycoremediation process. The biomass productivity was optimized using face centred central composite design (FCCCD) in response surface methodology (RSM) as a function of two independent variables that included wet market wastewater concentrations (A) with a range of 10% to 75% and aeration rate (B) with a range of 0.02 to 4.0 L/min. The results revealed that the highest biomass productivity (73 mg/L/d) and maximum growth rate (1.19 day−1) was achieved with the 64.26% of (A) and 3.08 L/min of (B). The GC-MS composition analysis of the biomass yield extract revealed that the major compounds are hexadecane (25%), glaucine (16.2%), and phytol (8.33%). The presence of these compounds suggests that WMW has the potential to be used as a production medium for Scenedesmus sp. Biomass, which has several applications in the pharmaceutical and chemical industry.


1993 ◽  
Vol 57 (2) ◽  
pp. 332-334 ◽  
Author(s):  
A. Blasco ◽  
E. Gómez

Two synthetic lines of rabbits were used in the experiment. Line V, selected on litter size, and line R, selected on growth rate. Ninety-six animals were randomly collected from 48 litters, taking a male and a female each time. Richards and Gompertz growth curves were fitted. Sexual dimorphism appeared in the line V but not in the R. Values for b and k were similar in all curves. Maximum growth rate took place in weeks 7 to 8. A break due to weaning could be observed in weeks 4 to 5. Although there is a remarkable similarity of the values of all the parameters using data from the first 20 weeks only, the higher standard errors on adult weight would make 30 weeks the preferable time to take data for live-weight growth curves.


1978 ◽  
Vol 14 (1) ◽  
pp. 1-5 ◽  
Author(s):  
J. L. Monteith

SUMMARYFigures for maximum crop growth rates, reviewed by Gifford (1974), suggest that the productivity of C3 and C4 species is almost indistinguishable. However, close inspection of these figures at source and correspondence with several authors revealed a number of errors. When all unreliable figures were discarded, the maximum growth rate for C3 stands fell in the range 34–39 g m−2 d−1 compared with 50–54 g m−2 d−1 for C4 stands. Maximum growth rates averaged over the whole growing season showed a similar difference: 13 g m−2 d−1 for C3 and 22 g m−2 d−1 for C4. These figures correspond to photosynthetic efficiencies of approximately 1·4 and 2·0%.


1968 ◽  
Vol 31 (3) ◽  
pp. 435-448 ◽  
Author(s):  
H. A. Becker ◽  
T. A. Massaro

A study has been made of the varicose instability of an axisymmetrical jet with a velocity distribution radially uniform at the nozzle mouth except for a laminar boundary layer at the wall. The evolutionary phenomena of instability, such as the rolling up of the cylindrical vortex layer into ring vortices, the coalescence of ring vortex pairs, and the eventual disintegration into turbulent eddies, have been investigated as a function of the Reynolds number using smoke photography, stroboscopic observation, and the light-scatter technique.Emphasis has been placed on the wavelength with maximum growth rate. The jet is highly sensitive to sound and the effects of several types of acoustic excitation, including pure tones, have been determined.


2021 ◽  
Author(s):  
Ameneh Mousavi ◽  
Kaijun Liu ◽  
Sina Sadeghzadeh

<p><span>The stability of the pickup ions in the outer heliosheath has been studied by many researchers because of its relevance to the energetic neutral atom (ENA) ribbon observed by the Interstellar Boundary EXplorer. However, previous studies are primarily limited to pickup ions of near </span><span>90° </span><span>pickup angles, the angle between the pickup ion injection velocity and the background, local interstellar magnetic field. Investigations on pickup ions of smaller pickup angles are still lacking. In this paper, linear kinetic dispersion analysis and hybrid simulations are carried out to examine the plasma instabilities driven by pickup ions of ring-beam velocity distributions at various pickup angles between zero and </span><span>90°</span><span>. </span><span>Parallel propagating waves are studied in the parameter regime where the parallel thermal spread of the pickup ions falls into the Alfvén cyclotron stability gap. </span><span>The linear analysis results and hybrid simulations both show that the fastest growing modes are the right-hand helicity waves propagating in the direction of the background magnetic field, and the maximum growth rate occurs at the pickup angle of </span><span>82°</span><span>. The simulation results further reveal that the saturation level of the fluctuating magnetic fields for pickup angles below </span><span>45° </span><span>is higher than that for pickup angles above </span><span>45°</span><span>. So, the scattering of pickup ions at near zero pickup angles is likely more pronounced than that at near </span><span>90° </span><span>pickup angles</span> .</p>


1992 ◽  
Vol 25 (6) ◽  
pp. 167-183 ◽  
Author(s):  
H. Siegrist ◽  
M. Tschui

The wastewater of the municipal treatment plants Zürich-Werdhölzli (350000 population equivalents), Zürich-Glatt (110000), and Wattwil (20000) have been characterized with regard to the activated sludge model Nr.1 of the IAWPRC task group. Zürich-Glatt and Wattwil are partly nitrifying treatment plants and Zürich-Werdhölzli is fully nitrifying. The mixing characteristics of the aeration tanks at Werdhölzli and Glatt were determined with sodium bromide as a tracer. The experimental data were used to calibrate hydrolysis, heterotrophic growth and nitrification. Problems arising by calibrating hydrolysis of the paniculate material and by measuring oxygen consumption of heterotrophic and nitrifying microorganisms are discussed. For hydrolysis the experimental data indicate first-order kinetics. For nitrification a maximum growth rate of 0.40±0.07 d−1, corresponding to an observed growth rate of 0.26±0.04 d−1 was calculated at 10°C. The half velocity constant found for 12 and 20°C was 2 mg NH4-N/l. The calibrated model was verified with experimental dam of me Zürich-Werdhölzli treatment plant during ammonia shock load.


1987 ◽  
Vol 44 (11) ◽  
pp. 1995-2001 ◽  
Author(s):  
Stephen H. Bowen

It is widely believed that fishes require more dietary protein than other vertebrates. Many aspects of fish physiology, nutrition, and trophic ecology have been interpreted within the context of this high protein requirement. Here, fishes are compared with terrestrial homeotherms in terms of (1) protein requirement for maintenance, (2) relative protein concentration in the diet required for maximum growth rate, (3) protein intake rate required for maximum growth rate, (4) efficiency of protein retention in growth, and (5) weight of growth achieved per weight of protein ingested. The two animal groups compared differ only in relative protein concentration in the diet required for maximum growth rate. This difference is explained in terms of homeotherms' greater requirement for energy and does not reflect absolute differences in protein requirement. The remaining measures of protein requirement suggest that fishes and terrestrial homeotherms are remarkably similar in their use of protein as a nutritional resource. Reinterpretation of the role of protein in fish physiology, nutrition, and trophic ecology is perhaps in order.


Sign in / Sign up

Export Citation Format

Share Document