scholarly journals The effect of silver nanoparticles, zinc oxide nanoparticles, and titanium dioxide nanoparticles on the push-out bond strength of fiber posts

2020 ◽  
pp. e249-e256 ◽  
Author(s):  
F. Shafiei ◽  
Z. Jowkar ◽  
Y. Omidi
2021 ◽  
Vol 22 (4) ◽  
pp. 2084
Author(s):  
Encarnación Fuster ◽  
Héctor Candela ◽  
Jorge Estévez ◽  
Eugenio Vilanova ◽  
Miguel A. Sogorb

Titanium dioxide and zinc oxide are two of the most widely used nanomaterials. We assessed the effects of noncytotoxic doses of both nanomaterials on T98G human glioblastoma cells by omic approaches. Surprisingly, no effects on the transcriptome of T98G cells was detected after exposure to 5 µg/mL of zinc oxide nanoparticles during 72 h. Conversely, the transcriptome of the cells exposed to 20 µg/mL of titanium dioxide nanoparticles during 72 h revealed alterations in lots of biological processes and molecular pathways. Alterations to the transcriptome suggests that exposure to titanium dioxide nanoparticles might, potentially, compromise the integrity of the blood brain barrier integrity and cause neuroinflammation. The latter issue was further confirmed phenotypically with a proteomic analysis and by recording the release of interleukin 8. Titanium dioxide also caused autophagy, which was demonstrated through the increase in the expression of the autophagy-related 3 and microtubule associated protein 1 light chain 3 alpha genes. The proteomic analysis revealed that titanium dioxide nanoparticles might have anticancerigen properties by downregulating genes involved in the detoxication of anthracyclines. A risk assessment resulting from titanium dioxide exposure, focusing on the central nervous system as a potential target of toxicity, is necessary.


2013 ◽  
Vol 10 (1) ◽  
pp. 9 ◽  
Author(s):  
Wan-Seob Cho ◽  
Byeong-Cheol Kang ◽  
Jong Kwon Lee ◽  
Jayoung Jeong ◽  
Jeong-Hwan Che ◽  
...  

Author(s):  
Lingxiangyu Li ◽  
Ashfeen Ubaid Khan ◽  
Xiang Zhang ◽  
Xiaoting Qian ◽  
Yawei Wang

With the rapid development of nanotechnology, personal care products with silver nanoparticles (Ag-NPs) or zinc oxide nanoparticles (ZnO-NPs) are being widely used because of their superior antibacterial efficacies. Biological fluids...


2020 ◽  
Vol 26 (6) ◽  
pp. 200454-0
Author(s):  
Sabaoon Shamshad ◽  
Jamshaid Rashid ◽  
Ihsan-ul-haq ◽  
Naseem Iqbal ◽  
Saif Ullah Awan

Multidrug resistance of bacteria is an emerging human health hazard and warrants development of novel antibacterial agents with more effective mode of action. Here, zinc oxide and silver nanomaterials were prepared using Ficus palmata Forssk leaf extract with efficient antibacterial activity. SEM coupled with EDS confirmed the spherical symmetry with average particle diameter 50 to 65 nm while the XRD confirmed crystalline face centered cubic structure of silver and hexagonal crystallize phase of zinc oxide nanoparticles. Antibacterial activity was evaluated for 8 pathogenic bacterial strains including 3 drug resistant pathogenic strains. The nanoparticles showed enhanced growth inhibition for resistant strains in comparison with the broad-spectrum antibiotics i.e. roxithromycin and cefixime. Minimum inhibitory concentration in μg.mL<sup>-1</sup> of silver nanoparticles was found to be as low as 33.3 for resistant Streptococcus haemolyticus; 11.1 for Staphylococcus aureus and E Coli; and 3.7 μg.mL<sup>-1</sup> for resistant Pseudomonas aeruginosa. Similarly, the minimum inhibitory concentration of zinc oxide nanoparticles was found to be 100 μg.mL<sup>-1</sup> against resistant Streptococcus haemolyticus and Staphylococcus aureus; 11.1 μg.mL<sup>-1</sup> for resistant Pseudomonas aeruginosa; and 3.7 μg.mL<sup>-1</sup> against resistant E coli. Ficus palmata Forssk leaf extracts can be explored effectively for synthesizing active antibacterial nanomaterials as a non-toxic and environmentally benign synthesis route.


2019 ◽  
Vol 13 (10) ◽  
pp. 1380-1395 ◽  
Author(s):  
Joseph Ndika ◽  
Umair Seemab ◽  
Wing-Lam Poon ◽  
Vittorio Fortino ◽  
Hani El-Nezami ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document