Research Progress of Electroacupuncture in Regulating Inflammatory Response to Secondary Spinal Cord Injury

2021 ◽  
2020 ◽  
Vol 111 (6) ◽  
Author(s):  
Siyuan Chen ◽  
Jinsong Wei ◽  
Liumei Huang ◽  
Bolin Feng ◽  
Weixiong Guo

Inflammation ◽  
2021 ◽  
Author(s):  
Shangrila Parvin ◽  
Clintoria R. Williams ◽  
Simone A. Jarrett ◽  
Sandra M. Garraway

Abstract— Accumulating evidence supports that spinal cord injury (SCI) produces robust inflammatory plasticity. We previously showed that the pro-inflammatory cytokine tumor necrosis factor (TNF)α is increased in the spinal cord after SCI. SCI also induces a systemic inflammatory response that can impact peripheral organ functions. The kidney plays an important role in maintaining cardiovascular health. However, SCI-induced inflammatory response in the kidney and the subsequent effect on renal function have not been well characterized. This study investigated the impact of high and low thoracic (T) SCI on C-fos, TNFα, interleukin (IL)-1β, and IL-6 expression in the kidney at acute and sub-chronic timepoints. Adult C57BL/6 mice received a moderate contusion SCI or sham procedures at T4 or T10. Uninjured mice served as naïve controls. mRNA levels of the proinflammatory cytokines IL-1β, IL-6, TNFα, and C-fos, and TNFα and C-fos protein expression were assessed in the kidney and spinal cord 1 day and 14 days post-injury. The mRNA levels of all targets were robustly increased in the kidney and spinal cord, 1 day after both injuries. Whereas IL-6 and TNFα remained elevated in the spinal cord at 14 days after SCI, C-fos, IL-6, and TNFα levels were sustained in the kidney only after T10 SCI. TNFα protein was significantly upregulated in the kidney 1 day after both T4 and T10 SCI. Overall, these results clearly demonstrate that SCI induces robust systemic inflammation that extends to the kidney. Hence, the presence of renal inflammation can substantially impact renal pathophysiology and function after SCI.


Bioengineered ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 2702-2712
Author(s):  
Qing An ◽  
Zipeng Zhou ◽  
Yi Xie ◽  
Yu Sun ◽  
Haixiang Zhang ◽  
...  

2020 ◽  
Vol 127 ◽  
pp. 110136 ◽  
Author(s):  
Yubao Lu ◽  
Jingjing Yang ◽  
Xuexi Wang ◽  
Zhanjun Ma ◽  
Sheng Li ◽  
...  

2014 ◽  
Vol 31 (24) ◽  
pp. 1967-1974 ◽  
Author(s):  
Daisuke Umebayashi ◽  
Atsushi Natsume ◽  
Hideyuki Takeuchi ◽  
Masahito Hara ◽  
Yusuke Nishimura ◽  
...  

2021 ◽  
Author(s):  
Tim Nutbeam ◽  
Rob Fenwick ◽  
Barbara May ◽  
Willem Stassen ◽  
Jason Smith ◽  
...  

Abstract Background:Motor vehicle collisions remain a common cause of spinal cord injury. Biomechanical studies of spinal movement often lack “real world” context and applicability. Additional data may enhance our understanding of the potential for secondary spinal cord injury. We propose the metric ‘travel’ (total movement) and suggest that our understanding of movement related risk of injury could be improved if travel was routinely reported. We report maximal movement and travel for collar application in vehicle and subsequent self-extrication.Methods:Biomechanical data on application of cervical collar with the volunteer sat in a vehicle were collected using Inertial Measurement Units on 6 healthy volunteers. Maximal movement and travel are reported. These data and a re-analysis of previously published work is used to demonstrate the utility of travel and maximal movement in the context of self-extrication.Results:Data from a total of 60 in-vehicle collar applications across three female and three male volunteers was successfully collected for analysis. The mean age across participants was 50.3 years (range 28–68) and the BMI was 27.7 (range 21.5–34.6). The mean maximal anterior-posterior movement associated with collar application was 2.3mm with a total AP travel of 4.9mm. Travel (total movement) for in-car application of collar and self-extrication was 9.5mm compared to 9.4mm travel for self-extrication without a collar. Conclusion:We have demonstrated the application of ‘travel’ in the context of self-extrication. Total travel is similar across self-extricating healthy volunteers with and without a collar.We suggest that where possible ‘travel’ is collected and reported in future biomechanical studies in this and related areas of research. It remains appropriate to apply a cervical collar to self-extricating casualties when the clinical target is that of movement minimisation.


2021 ◽  
Vol 15 ◽  
Author(s):  
Yang Liu ◽  
Grace Hammel ◽  
Minjun Shi ◽  
Zhijian Cheng ◽  
Sandra Zivkovic ◽  
...  

Although the increased expression of members of the chondroitin sulfate proteoglycan family, such as neuron-glial antigen 2 (NG2), have been well documented after an injury to the spinal cord, a complete picture as to the cellular origins and function of this NG2 expression has yet to be made. Using a spinal cord injury (SCI) mouse model, we describe that some infiltrated bone marrow-derived macrophages (BMDMΦ) are early contributors to NG2/CSPG4 expression and secretion after SCI. We demonstrate for the first time that a lesion-related form of cellular debris generated from damaged myelin sheaths can increase NG2/CSPG4 expression in BMDMΦ, which then exhibit enhanced proliferation and decreased phagocytic capacity. These results suggest that BMDMΦ may play a much more nuanced role in secondary spinal cord injury than previously thought, including acting as early contributors to the NG2 component of the glial scar.


Sign in / Sign up

Export Citation Format

Share Document