scholarly journals Supplementary material to "Global Warming Potentials for the C<sub>1</sub>-C<sub>3</sub> Hydrochlorofluorocarbons (HCFCs) Included in the Kigali Amendment to the Montreal Protocol"

Author(s):  
Dimitrios K. Papanastasiou ◽  
Allison Beltrone ◽  
Paul Marshall ◽  
James B. Burkholder
2018 ◽  
Vol 18 (9) ◽  
pp. 6317-6330 ◽  
Author(s):  
Dimitrios K. Papanastasiou ◽  
Allison Beltrone ◽  
Paul Marshall ◽  
James B. Burkholder

Abstract. Hydrochlorofluorocarbons (HCFCs) are ozone depleting substances and potent greenhouse gases that are controlled under the Montreal Protocol. However, the majority of the 274 HCFCs included in Annex C of the protocol do not have reported global warming potentials (GWPs) which are used to guide the phaseout of HCFCs and the future phase down of hydrofluorocarbons (HFCs). In this study, GWPs for all C1–C3 HCFCs included in Annex C are reported based on estimated atmospheric lifetimes and theoretical methods used to calculate infrared absorption spectra. Atmospheric lifetimes were estimated from a structure activity relationship (SAR) for OH radical reactivity and estimated O(1D) reactivity and UV photolysis loss processes. The C1–C3 HCFCs display a wide range of lifetimes (0.3 to 62 years) and GWPs (5 to 5330, 100-year time horizon) dependent on their molecular structure and the H-atom content of the individual HCFC. The results from this study provide estimated policy-relevant GWP metrics for the HCFCs included in the Montreal Protocol in the absence of experimentally derived metrics.


2018 ◽  
Author(s):  
Dimitrios K. Papanastasiou ◽  
Allison Beltrone ◽  
Paul Marshall ◽  
James B. Burkholder

Abstract. Hydrochlorofluorocarbons (HCFCs) are ozone depleting substances and potent greenhouse gases that are controlled under the Montreal Protocol. However, the majority of the 274 HCFCs included in Annex C of the protocol do not have reported global warming potentials (GWPs) that are used to guide the phase-out of HCFCs and the future phase-down of hydrofluorocarbons (HFCs). In this study, GWPs for all C1-C3 HCFCs included in Annex C are reported based on estimated atmospheric lifetimes and theoretical methods used to calculate infrared absorption spectra. Atmospheric lifetimes were estimated from a structure activity relationship (SAR) for OH radical reactivity and estimated O(1D) reactivity and UV photolysis loss processes. The HCFCs display a wide range of lifetimes and GWPs dependent on their molecular structure and H-atom content of the individual HCFC. The results from this study provide reliable policy relevant GWP metrics for the HCFCs included in the Montreal Protocol in the absence of experimentally derived metrics.


2016 ◽  
Author(s):  
Anna Totterdill ◽  
Tamás Kovács ◽  
Wuhu Feng ◽  
Sandip Dhomse ◽  
Christopher J. Smith ◽  
...  

Abstract. Fluorinated compounds such as NF3 and C2F5Cl (CFC-115) are characterised by very large global warming potentials (GWPs) which result from extremely long atmospheric lifetimes and strong infrared absorptions in the atmospheric window. In this study we have experimentally determined the infrared absorption cross-sections of NF3 and CFC-115, calculated the radiative forcing and efficiency using two radiative transfer models and identified the effect of clouds and stratospheric adjustment. The infrared cross sections are in good agreement with previous measurements, whereas the resulting radiative forcings and efficiencies are, on average, around 10 % larger. A whole atmosphere chemistry-climate model was used to determine the atmospheric lifetimes of NF3 and CFC-115 to be (616 ± 34) years and (492 ± 22) years, respectively. The GWPs for NF3 are estimated to be 14 600, 19 400 and 21 400 over 20, 100 and 500 years, respectively. Similarly, the GWPs for CFC-115 are 6120, 8060 and 8630 over 20, 100 and 500 years, respectively.


2008 ◽  
Vol 10 (6) ◽  
pp. 808-820 ◽  
Author(s):  
Vassileios C. Papadimitriou ◽  
Ranajit K. Talukdar ◽  
R. W. Portmann ◽  
A. R. Ravishankara ◽  
James B. Burkholder

Sign in / Sign up

Export Citation Format

Share Document