scholarly journals The impact of climate oscillations on the surface energy budget over the Greenland Ice Sheet in a changing climate

2022 ◽  
Author(s):  
Tiago Silva ◽  
Jakob Abermann ◽  
Brice Noël ◽  
Sonika Shahi ◽  
Willem Jan van de Berg ◽  
...  

Abstract. Climate change is particularly strong in Greenland primarily as a result of changes in advection of heat and moisture fluxes from lower latitudes. The atmospheric structures involved influence the surface mass balance and their pattern are largely explained by climate oscillations which describe the internal climate variability. Based on a clustering method, we combine the Greenland Blocking Index and the North Atlantic Oscillation index with the vertically integrated water vapor to analyze inter-seasonal and regional impacts of the North Atlantic influence on the surface energy components over the Greenland Ice Sheet. In comparison to the reference period (1959–1990), the atmosphere has become warmer and moister during recent decades (1991–2020) for contrasting atmospheric circulation patterns. Particularly in the northern regions, increases in tropospheric water vapor enhance incoming longwave radiation and thus contribute to surface warming. Surface warming is most evident in winter, although its magnitude and spatial extent depend on the prevailing atmospheric configuration. Relative to the reference period, increases in sensible heat flux in the summer ablation zone are found irrespective of the atmospheric circulation pattern. Especially in the northern ablation zone, these are explained by the stronger katabatic winds which are partly driven by the larger surface pressure gradients between the ice/snow-covered surface and adjacent seas, and by the larger temperature gradient between near-surface air and the air above. Increases in net shortwave radiation are mainly connected to high-pressure systems. Whereas in the southern part of Greenland the atmosphere has gotten optical thinner, thus allowing more incoming shortwave radiation to reach the surface, in the northern part the incoming shortwave radiation flux has changed little with respect to the reference period, but the surface albedo decreased due to the expansion of the bare ice area.

2013 ◽  
Vol 9 (2) ◽  
pp. 935-953 ◽  
Author(s):  
M. Kageyama ◽  
U. Merkel ◽  
B. Otto-Bliesner ◽  
M. Prange ◽  
A. Abe-Ouchi ◽  
...  

Abstract. Fresh water hosing simulations, in which a fresh water flux is imposed in the North Atlantic to force fluctuations of the Atlantic Meridional Overturning Circulation, have been routinely performed, first to study the climatic signature of different states of this circulation, then, under present or future conditions, to investigate the potential impact of a partial melting of the Greenland ice sheet. The most compelling examples of climatic changes potentially related to AMOC abrupt variations, however, are found in high resolution palaeo-records from around the globe for the last glacial period. To study those more specifically, more and more fresh water hosing experiments have been performed under glacial conditions in the recent years. Here we compare an ensemble constituted by 11 such simulations run with 6 different climate models. All simulations follow a slightly different design, but are sufficiently close in their design to be compared. They all study the impact of a fresh water hosing imposed in the extra-tropical North Atlantic. Common features in the model responses to hosing are the cooling over the North Atlantic, extending along the sub-tropical gyre in the tropical North Atlantic, the southward shift of the Atlantic ITCZ and the weakening of the African and Indian monsoons. On the other hand, the expression of the bipolar see-saw, i.e., warming in the Southern Hemisphere, differs from model to model, with some restricting it to the South Atlantic and specific regions of the southern ocean while others simulate a widespread southern ocean warming. The relationships between the features common to most models, i.e., climate changes over the north and tropical Atlantic, African and Asian monsoon regions, are further quantified. These suggest a tight correlation between the temperature and precipitation changes over the extra-tropical North Atlantic, but different pathways for the teleconnections between the AMOC/North Atlantic region and the African and Indian monsoon regions.


2021 ◽  
Author(s):  
Sophie Stolzenberger ◽  
Roelof Rietbroek ◽  
Claudia Wekerle ◽  
Bernd Uebbing ◽  
Jürgen Kusche

<p>The impact of Greenland freshwater on oceanic variables in the North Atlantic has been controversially discussed in the past. Within the framework of the German research project GROCE (Greenland Ice Sheet Ocean Interaction), we present a comprehensive study using ocean modelling results including and excluding the Greenland freshwater flux. The aim of this study is whether signatures of Greenland ice sheet melting found in ocean model simulations are visible in the observations. Therefore, we estimate changes in temperature, salinity, steric heights and sea level anomalies since the 1990s. The observational database includes altimetric and gravimetric satellite data as well as Argo floats. We will discuss similarities/differences between model simulations and observations for smaller regions around Greenland in the North Atlantic. As these experiments are available for two different horizontal resolutions, we will furthermore be able to assess the effects of an increased model resolution.</p>


2021 ◽  
Author(s):  
Brian Crow ◽  
Matthias Prange ◽  
Michael Schulz

<p>Historical estimates of the melt rate and extent of the Greenland ice sheet (GrIS) are poorly constrained, due both to incomplete understanding of relevant ice dynamics and the magnitude of forcing acting upon the ice sheet (e.g., Alley et al. 2010). Previous assessments of the Marine Isotope Stage 11 (MIS-11) interglacial period have determined it was likely one of the warmest and longest interglacial periods of the past 800 kyr, leading to melt of at least half the present-day volume of the Greenland ice sheet (Robinson et al. 2017). An enhanced Atlantic meridional overturning circulation (AMOC) is commonly cited as sustaining the anomalous warmth across the North Atlantic and Greenland (e.g., Rachmayani et al. 2017), but little is known about potential atmospheric contributions. Paleorecords from this period are sparse, and detailed climate modelling studies of this period have been heretofore very limited. The climatic conditions over Greenland and the North Atlantic region, and how they may have contributed to the melt of the GrIS during MIS-11, are therefore not well understood. By utilizing climate simulations with the Community Earth System Model (CESM), our study indicates that changes in atmospheric eddy behavior, including eddy fluxes of heat and precipitation, made significant contributions to the negative mass balance conditions over the GrIS during the MIS-11 interglacial. Thus, accounting for the effects of atmospheric feedbacks in a warmer-than-present climate is a necessary component for future analyses attempting to better constrain the extent and rate of melt of the GrIS.</p>


2009 ◽  
Vol 48 (9) ◽  
pp. 1902-1912 ◽  
Author(s):  
Josefina Moraes Arraut ◽  
Prakki Satyamurty

Abstract December–March climatologies of precipitation and vertically integrated water vapor transport were analyzed and compared to find the main paths by which moisture is fed to high-rainfall regions in the Southern Hemisphere in this season. The southern tropics (20°S–0°) exhibit high rainfall and receive ample moisture from the northern trades, except in the eastern Pacific and the Atlantic Oceans. This interhemispheric flow is particularly important for Amazonian rainfall, establishing the North Atlantic as the main source of moisture for the forest during its main rainy season. In the subtropics the rainfall distribution is very heterogeneous. The meridional average of precipitation between 35° and 25°S is well modulated by the meridional water vapor transport through the 25°S latitude circle, being greater where this transport is from the north and smaller where it is from the south. In South America, to the east of the Andes, the moisture that fuels precipitation between 20° and 30°S comes from both the tropical South and North Atlantic Oceans whereas between 30° and 40°S it comes mostly from the North Atlantic after passing over the Amazonian rain forest. The meridional transport (across 25°S) curve exhibits a double peak over South America and the adjacent Atlantic, which is closely reproduced in the mean rainfall curve. This corresponds to two local maxima in the two-dimensional field of meridional transport: the moisture corridor from Amazonia into the continental subtropics and the moisture flow coming from the southern tropical Atlantic into the subtropical portion of the South Atlantic convergence zone. These two narrow pathways of intense moisture flow could be suitably called “aerial rivers.” Their longitudinal positions are well defined. The yearly deviations from climatology for moisture flow and rainfall correlate well (0.75) for the continental peak but not for the oceanic peak (0.23). The structure of two maxima is produced by the effect of transients in the time scale of days.


2012 ◽  
Vol 140 (4) ◽  
pp. 1047-1066 ◽  
Author(s):  
Melinda S. Peng ◽  
Bing Fu ◽  
Tim Li ◽  
Duane E. Stevens

This study investigates the characteristic differences of tropical disturbances that eventually develop into tropical cyclones (TCs) versus those that did not, using global daily analysis fields of the Navy Operational Global Atmospheric Prediction System (NOGAPS) from the years 2003 to 2008. Time filtering is applied to the data to extract tropical waves with different frequencies. Waves with a 3–8-day period represent the synoptic-scale disturbances that are representatives as precursors of TCs, and waves with periods greater than 20 days represent the large-scale background environmental flow. Composites are made for the developing and nondeveloping synoptic-scale disturbances in a Lagrangian frame following the disturbances. Similarities and differences between them are analyzed to understand the dynamics and thermodynamics of TC genesis. Part I of this study focuses on events in the North Atlantic, while Part II focuses on the western North Pacific. A box difference index (BDI), accounting for both the mean and variability of the individual sample, is introduced to subjectively and quantitatively identify controlling parameters measuring the differences between developing and nondeveloping disturbances. Larger amplitude of the BDI implies a greater possibility to differentiate the difference between two groups. Based on their BDI values, the following parameters are identified as the best predictors for cyclogenesis in the North Atlantic, in the order of importance: 1) water vapor content within 925 and 400 hPa, 2) rain rate, 3) sea surface temperature (SST), 4) 700-hPa maximum relative vorticity, 5) 1000–600-hPa vertical shear, 6) translational speed, and 7) vertically averaged horizontal shear. This list identifies thermodynamic variables as more important controlling parameters than dynamic variables for TC genesis in the North Atlantic. When the east and west (separated by 40°W) Atlantic are examined separately, the 925–400-hPa water vapor content remains as the most important parameter for both regions. The SST and maximum vorticity at 700 hPa have higher importance in the east Atlantic, while SST becomes less important and the vertically averaged horizontal shear and horizontal divergence become more important in the west Atlantic.


2015 ◽  
Vol 128 ◽  
pp. 61-71 ◽  
Author(s):  
Ki-Weon Seo ◽  
Duane E. Waliser ◽  
Choon-Ki Lee ◽  
Baijun Tian ◽  
Ted Scambos ◽  
...  

2018 ◽  
Vol 57 (4) ◽  
pp. 921-935 ◽  
Author(s):  
Jonathan Edwards-Opperman ◽  
Steven Cavallo ◽  
David Turner

AbstractStratiform liquid-bearing clouds (LBCs), defined herein as either pure liquid or mixed-phase clouds, have a large impact on the surface radiation budget across the Arctic. LBCs lasting at least 6 h are observed at Summit, Greenland, year-round with a maximum in occurrence during summer. Mean cloud-base height is below 1 km for 85% of LBC cases identified, 59% have mean liquid water path (LWP) values between 10 and 40 g m−2, and most produce sporadic light ice-phase precipitation. During their occurrence, the atmosphere above the ice sheet is anomalously warm and moist, with southerly winds observed over much of the ice sheet, including at Summit. LBCs that occur when the North Atlantic Oscillation (NAO) is in the negative phase correspond to strong ridging centered over the Greenland Ice Sheet (GIS), allowing for southwesterly flow over the GIS toward Summit. During the positive phase of the NAO, the occurrence of LBCs corresponds to a cyclone located off the southeastern coast of the ice sheet, which leads to easterly-to-southeasterly flow toward Summit. Furthermore, air parcels at Summit frequently originate from below the elevation of Summit, indicating that orographic lift along the ice sheet is a factor in the occurrence of LBCs at Summit. LBCs are more frequently observed during the negative NAO, and both the LWP and precipitation rate are larger in LBCs occurring during this phase. Mean LWP in LBCs occurring during the negative NAO is 15 g m−2 larger than in LBCs occurring during the positive phase.


2014 ◽  
Vol 8 (2) ◽  
pp. 1453-1477 ◽  
Author(s):  
B. Noël ◽  
X. Fettweis ◽  
W. J. van de Berg ◽  
M. R. van den Broeke ◽  
M. Erpicum

Abstract. During recent summers (2007–2012), several surface melt records were broken over the Greenland Ice Sheet (GrIS). The extreme summer melt resulted in part from a persistent negative phase of the North-Atlantic Oscillation (NAO), favouring warmer than normal conditions over the GrIS. In addition, it has been suggested that significant anomalies in sea ice cover (SIC) and sea surface temperature (SST) may partially explain recent anomalous GrIS surface melt. To assess the impact of 2007–2012 SIC and SST anomalies on GrIS surface mass balance (SMB), a set of sensitivity experiments was carried out with the regional climate model MAR. These simulations suggest that changes in SST and SIC in the seas surrounding Greenland do not significantly impact GrIS SMB, due to the katabatic winds blocking effect. These winds are strong enough to prevent oceanic near-surface air, influenced by SIC and SST variability, from penetrating far inland. Therefore, the ice sheet SMB response is restricted to coastal regions, where katabatic winds are weaker. However, anomalies in SIC and SST could have indirectly affected the surface melt by changing the general circulation in the North Atlantic region, favouring more frequent warm air advection to the GrIS.


2021 ◽  
pp. 1-52

Abstract Recent rapid melting of summer Greenland ice sheet (GrIS) and its impact on the Earth’s climate has attracted much attention. In this paper, we establish a connection between the melting of GrIS and the variability of summer sea surface temperature (SST) anomalies over North Atlantic on interannual to interdecadal timescales through changes in sub-seasonal Greenland blocking (GB). It is found that the latitude and width of GB are important for the spatial patterns of the GrIS melting. The melting of GrIS on interdecadal timescales is most prominent for the positive Atlantic Multidecadal Oscillation phase (AMO+) because the high latitude GB and its large width, long lifetime and slow decay are favored. However, the North Atlantic mid-high latitude warm-cold-warm (cold-warm-cold) tripole or NAT+ (NAT−) pattern on interannual timescales tends to strengthen (weaken) the role of AMO+ in the GrIS melting especially on the northern or northeastern periphery of Greenland by promoting (inhibiting) high-latitude GB and increasing (decreasing) its width. It is further revealed that AMO+ (NAT+) favors the persistence and width of GB mainly through producing weak summer zonal winds and small summer meridional potential vorticity gradient (PVy) in the North Atlantic mid-high latitudes 55°-70°N (55°-65°N) compared to the role of AMO− (NAT−). The event frequency and zonal width of GB events and their poleward shift are favored by the combination of NAT+ with AMO+. In contrast, the combination of NAT− and AMO+ tends to suppress reduced summer zonal winds and PVy, thus inhibiting the event frequency of GB events and their poleward shift and zonal width.


Sign in / Sign up

Export Citation Format

Share Document