scholarly journals Forage Production and Bromatological Composition of Forage Species Intercropped With Soybean

2019 ◽  
Vol 12 (1) ◽  
pp. 84
Author(s):  
Carlos Augusto Oliveira de Andrade ◽  
Emerson Borghi ◽  
Leandro Bortolon ◽  
Elisandra Solange Oliveira Bortolon ◽  
Francelino Peteno de Camargo ◽  
...  

Brazil is one the largest soybean and cattle producer worldwide and degrade pasture is one of the major problem in the Cerrado region. Integrated crop-livestock system is a key to increase grower income, to reduce crop yield loss by water deficit during growing season and to reclaim degraded pasture. However, forage production and its quality is important to evaluate under integrated crop-livestock system. The objective of this study was to evaluate forage production and the bromatological composition of different forage species in monoculture and in intercropping with soybean in an oversowing system. A completely randomized block design with four replications in a 5 × 2 + 1 factorial scheme, with five forage species (Urochloa brizantha cv. Marandu; U. ruziziensis; P. maximus cv. Mombaça; P. infestans cv. Massai and P. americanum) and two cropping systems (monoculture and a consortium with soybeans) and a standard treatment (P. americanum in succession with soybeans). The forage productivity and the bromatological composition of the forages were evaluated. The species U. ruziziensis, U. brizantha, M. maximum and P. infestans presented higher forage production capacity, when cultivated in consortium with soybeans and in monoculture, in relation to P. americanum. The cultivation of the forages U. ruziziensis, U. brizantha, M. maximum and P. americanum in monoculture produced higher productivity than that in consortium with soybeans. The forages U. ruziziensis and U. brizantha intercropped with soybean presented a better nutritional value over the autumn-winter period.

2020 ◽  
pp. 1072-1080
Author(s):  
Charles Barbosa Santos ◽  
Kátia Aparecida de Pinho Costa ◽  
Wender Ferreira de Souza ◽  
Alessandro Guerra da Silva ◽  
Victor Costa e Silva ◽  
...  

Intercropping systems have become an interesting alternative for grain and forage production because they are sustainable systems that reduce carbon emissions in degraded pasture areas. However, few studies have used forage species recently introduced into the market, and more studies that assess the performances of these species in integrated systems are needed. Therefore, the objective of this study was to evaluate the agronomic characteristics of intercropped sorghum and Paiaguas palisadegrass (including the species name) in a crop-livestock integration system for pasture recovery. The field experiment was conducted in the municipality of Rio Verde, Goiás, Brazil, using a randomized block design with four replications. The treatments consisted of the following forage systems: monocropping of sorghum, monocropping of Paiaguas palisadegrass, row intercropping of sorghum with Paiaguas palisadegrass, interrow intercropping of sorghum with Paiaguas palisadegrass and intercropping of sorghum with oversown Paiaguas palisadegrass. To obtain a desired population of 240,000 plants ha-1, 12 seeds of sorghum and 5 kg of viable pure seeds of the forage species were planted per meter and hectare, respectively. The growth of Paiaguas palisadegrass in the same row as sorghum reduced the sorghum grain yield. The intercropping of sorghum with oversown Paiaguas palisadegrass hindered the initial development of Paiaguas palisadegrass in terms of plant height and number of tillers due to shading, and this effect was reflected in the dry mass production. Row and interrow intercropping provided higher dry mass production without affecting the forage quality. Therefore, the interrow intercropping of sorghum with Paiaguas palisadegrass was found to be a promising agricultural technique for grain and forage production that could be used for the establishment of new pastures or pasture recovery.


2018 ◽  
Vol 39 (6) ◽  
pp. 2517
Author(s):  
Armindo Neivo Kichel ◽  
Luis Carlos Ferreira de Souza ◽  
Roberto Giolo de Almeida ◽  
José Alexandre Agiova da Costa

This study aimed to assess productivity and nutritional value of the tropical grasses Brachiaria brizantha cv. Piatã, Xaraés, and Marandu, Panicum maximum cv. Mombaça, and B. ruziziensis cv. Kennedy in the interseason of an integrated crop-livestock (ICL) system since alternatives are needed for forage production for animal grazing in Autumn and Winter. The experimental design was a randomized block design in a split-split plot scheme with four replications. The treatments of plots consisted of five grasses, subplots consisted of three cropping systems (monoculture, intercropping with corn and unsuppressed grass, and intercropped with corn and suppressed grass), and sub-subplots consisted of four cutting intervals of grasses (50, 90, 125, and 195 days after emergence - DAE). The experiment was carried out from February to September 2014. Dry matter (DM) productivity, obtained at 195 DAE for the three cropping systems (monoculture grass, unsuppressed and suppressed grass in intercropping), were 18.45, 7.15, and 3.05 t ha?1, respectively, and average crude protein contents of leaf blades of grasses decreased linearly between the cutting intervals of 50 to 195 DAE from 19.95 to 9.70%, respectively. Under integrated systems, the studied grasses showed better yields and nutritional quality when compared to traditional grazing systems. Panicum maximum cv. Mombaça and Brachiaria brizantha cv. Xaraés and Piatã had the highest leaf and crude protein yields when compared to Brachiaria ruziziensis cv. Kennedy and Brachiaria brizantha cv. Marandu. In terms of nutritional value, Brachiaria ruziziensis cv. Kennedy was superior to Mombaça and Xaraés grasses but had lower total dry matter yield. Finally, Xaraés, Piatã and Mombaça grasses are recommended choices ICL systems when fodder grass production is the goal.


2020 ◽  
Vol 19 ◽  
pp. 17
Author(s):  
SUZETE FERNANDES LIMA ◽  
LEANDRO SPÍNDOLA PEREIRA ◽  
GUSTAVO SILVA DE OLIVEIRA ◽  
GUSTAVO DORNELAS DE SOUSA ◽  
PAULO CÉSAR TIMOSSI ◽  
...  

Evaluation was carried out for the interrelation between maize and Urochloa brizantha cv. Marandu and Urochloa ruziziensis, with and without application of glyphosate underdoses, and the effects of this management on weeds. For each forage species, an experiment was conducted in randomized block design, with subdivided plots. The main factor consisted of four cropping systems: intercropping of maize and U. brizantha, treated with 0, 50 and 100 g a.e. ha-1 of glyphosate, and maize monoculture; and for the intercropping of maize and U. ruziziensis, the doses of glyphosate applied were 25 and 50 g a.e. ha-1. The secondary factor consisted of five evaluation periods, with dry mass of maize and forage plants being measured on the day when the herbicide was applied, 15 days after the application, at full tasseling of maize, in hard farinaceous grain stage, and at maize harvest. Weed density and dry mass were also evaluated. The intercropping system reduced the density and dry mass production of the weed community, without affecting the maize yield components. Glyphosate suppressed the initial growth of U. brizantha and U. ruziziensis intercropped with maize, at the dose of 100 and 50 g a.e. ha-1, respectively, without compromising straw (residues) formation.


2018 ◽  
Vol 31 (1) ◽  
pp. 191-201 ◽  
Author(s):  
LUCIVANIA RODRIGUES LIMA ◽  
THIERES GEORGE FREIRE DA SILVA ◽  
POLIANA DE CALDAS PEREIRA ◽  
JOSÉ EDSON FLORENTINO DE MORAIS ◽  
MERY CRISTINA DE SÁ ASSIS

ABSTRACT The objective of this study was to evaluate the productive and economic performance of a forage cactus and sorghum intercropping system in relation to a forage cactus single cropping system under different irrigation blades with saline water. The study was conducted in Serra Talhada, State of Pernambuco, in a randomized block design, consisting of a factorial arrangement with split-plot parcels (5×2) and four replications. The five plots were the irrigation depths based on the reference evapotranspiration (ETo) (0, 8.75, 17.5, 26.25, and 35% ETo) and the two cropping systems were single forage cactus cropping and cactus intercropped with sorghum. The experiment was conducted for one year, with one forage cactus cycle and two cycles of sorghum. Yields were obtained at the end of the cycles. Economic profitability was analyzed by means of net revenue (NR) and the benefit/cost ratio (B/C), with cactus forage sold as forage or as "seed" and sorghum as forage. Net revenue and B/C simulations were carried out over an eight-year useful life span of the irrigation system. Increasing irrigation depth increased the dry matter yield of the intercropping system because of higher sorghum yield. Based on the NR and B/C ratio values, forage cactus and sorghum produced as forage produced higher economic outcomes in the intercropping system and showed a higher profitability from the 2nd year of implementation of the irrigation system. Forage cactus and sorghum intercropping irrigated with saline water is therefore recommended for forage production in the Brazilian semi-arid region.


2018 ◽  
Vol 36 ◽  
Author(s):  
M.C. BRANT ◽  
L.D. TUFFI SANTOS ◽  
I.C. FREITAS ◽  
L.A. FRAZÃO ◽  
M.S.N. SILVA ◽  
...  

ABSTRACT: Light intensity available in growing environments may influence the susceptibility of plants to glyphosate and decomposition of their residues. This study aimed to assess the productivity, control, and decomposition of forage straw submitted to glyphosate doses and exposed to full sun and 50% shade. Two experiments were carried out, one for Piatã grass (Urochloa brizantha cv. Piatã) and other for Tanzania grass (Megathyrsus maximus cv. Tanzania). The experimental design was a randomized block design with strip-plot and four replications. Two growing environments (at full sun and under 50% shade) were installed in strips in the growing area, combined with six doses of glyphosate (0, 360, 720, 1,080, 1,440, and 1,800 g a.e. ha-1) used for forage desiccation. Shade did not change Tanzania grass productivity (p<0.05), but it reduced Piatã grass productivity (p>0.05), suggesting its low tolerance to light restriction. Tanzania grass is more tolerant to glyphosate when compared to Piatã grass, especially at full sun conditions. In general, the evaluated forages present a high susceptibility to glyphosate as incident radiation is reduced, which allows using lower doses to desiccate them in shaded environments. Straw decomposition of Piatã and Tanzania grasses was slower under shading. In this environment with light restriction, straw is more durable and has a better quality for the no-tillage system.


2017 ◽  
Vol 38 (6) ◽  
pp. 3681 ◽  
Author(s):  
Nelson Eduardo Prestes ◽  
Cassandro Vidal Talamini do Amarante ◽  
Cassiano Eduardo Pinto ◽  
Gabriel Avila Prestes ◽  
Guilherme Doneda Zanini ◽  
...  

Natural pastures are important ecosystems that both contribute to biodiversity conservation and provide an important source of income, especially for cattle ranchers. While these pastures yield fairly low productivity, they can be improved by increasing soil fertility and introducing species with high productive potentials. In this sense, the purpose of this study was to evaluate the effects of applying limestone and phosphorus, as well as introducing cool-season species with a mixture of species dominated by Schizachyrium tenerum Nees, into a natural pasture in the Catarinense Plateau. The experiment was conducted from January 2010 to December 2013; the treatments consisted of superficial distribution of limestone in proportions of 3.6, 7.2, 11.0, and 14.4 t ha-1, as well as distribution of phosphorus in the form of triple superphosphate in proportions of 35, 70, 105, and 140 kg of P2O5 ha-1. In addition, cool-season species were overseeded. The experiment consisted of a randomized block design with subdivided plots and three replications. Limestone was applied to the main parcel, whereas phosphorus was applied to the subplots. There was no interaction between the levels of limestone and phosphorus. The application of 11.0 t ha-1 of limestone yielded the highest forage production, with 3,932.2 kg of dry matter (DM) ha-1 during the second year. Red clover was the species that best reacted to the additions, with levels of 7.2 and 11.0 t ha-1 over the 4 years. In addition, phosphorus provoked a positive response throughout the experiment. The highest forage production was observed during the second year, with an addition of 140 kg P2O5 ha-1 (4,419.4 kg DM ha-1). Only one-eighth of the recommended amount of limestone (3.6 t ha-1) allowed for the establishment and persistence of the legumes introduced into natural pastures. These additions, associated with increasing levels of phosphorus, yielded linear growth in the production of forage in natural pastures with a mixture of species dominated by Schizachyrium tenerum Nees.


Author(s):  
Firdoz Shahana ◽  
M. Goverdhan ◽  
S. Sridevi ◽  
B. Joseph

A field experiment was conducted during 2016-17 at AICRP on Integrated Farming Systems, Regional Sugarcane and Rice Research Station, Rudrur to diversify existing rice-rice cropping system with less water requiring crops under irrigated dry conditions for vertisols of Northern Telangana Zone. The experiment was laid out with twelve cropping systems as treatments in Randomized Block Design (RBD) with three replications. The twelve combinations of cropping systems tested during kharif and rabi seasons were rice – rice (check), maize + soybean (2:4) – tomato, maize + soybean (2:4) - rice, maize - sunflower + chickpea (2:4), maize - chickpea, Bt cotton + soybean (1:2) on broadbed – sesame + groundnut (2:4), Bt cotton - sesame + blackgram (2:4), soybean – wheat, soybean – sunflower + chickpea (2:4), turmeric – sesame, turmeric + soybean (1:2) on flat bed – bajra and turmeric + soybean (1:2) on broadbed – sesame + blackgram (2:4). On system basis, significantly higher productivity in terms of rice equivalent yield (REY) of 23830 kg ha-1 was recorded with turmeric+soybean (1:2) BBF– sesame+blackgram (2:4) turmeric – sesame cropping sequence. However it was on par with turmeric – sesame and turmeric + soybean (1:2) on flat bed – bajra crop sequence with productivity of 23332 kg ha-1 and 21389 kg ha-1 respectively. Lower productivity was recorded with rice-rice cropping system (10725 kg ha-1). Significantly higher system net returns were recorded with Bt. cotton – sesame + black gram (2:4) on BBF (Rs222838 ha-1) closely followed by Bt Cotton + Soybean (1:2) (BBF) - Sesamum + Groundnut (2:4) (Rs221160 ha-1) and Maize+soybean (2:4)–tomato (Rs212909 ha-1). Lower system net returns were recorded in conventional rice-rice system (Rs88179 ha-1). Bt. cotton – sesame + black gram (2:4) and Bt Cotton + Soybean (1:2) (BBF)- Sesamum + Groundnut ((2:4) and Maize+soybean (2:4)–tomato were economically superior with REE of 152.71%, 150.81% and 141.45%. Rice- Rice cropping adopted by majority of farmers is less productive and economically inferior indicating wider scope of diversifying existing rice- rice cropping system with high productive, economically viable cropping systems in vertisols of Northern Telangana Zone.


2019 ◽  
Vol 43 ◽  
Author(s):  
Diego Corona Baitelle ◽  
Abraão Carlos Verdin Filho ◽  
Sílvio de Jesus Freitas ◽  
Guilherme Bessa Miranda ◽  
Henrique Duarte Vieira ◽  
...  

ABSTRACT The cycle pruning programmed is a reinvigoration technique widely employed in Conilon coffee. This strategy may also be adopted for Arabica coffee to increase its crop longevity and yield. In this scenario, the present study proposes to examine the influence of the cycle pruning programmed on the vegetative and productive development of Arabica coffee. The experiment was developed in the field as a randomized-block design with four replicates. Treatments were tested in a 4 × 2 factorial arrangement consisting of four stem densities (4000, 8000, 12000 or 16000 stems ha-1) and two management strategies for the removal of plagiotropic branches (annual or biennial removal of branches which had reached 70% or more of their production capacity). For some variables, the treatments were organized as a 4 × 2 × 2 factorial arrangement in which the last factor corresponded to two regions of data collection in the plant (upper or lower). For all factorial arrangements, an additional treatment (control) was employed corresponding to traditional pruning (recepa). Annual or biennial removal of plagiotropic branches which had attained 70% or more of their production capacity can be adopted with no losses to crop yield. The cycle pruning programmed improves the distribution of branches, increases canopy area and prevents the occurrence of the “naked neck” phenomenon, observed in control treatment. Additionally, it provides better agronomic and productive performance; therefore, it can be used as a substitute for recepa.


Author(s):  
Rakesh Kumar ◽  
B.C. Sharma ◽  
Neetu Sharma ◽  
Brij Nanadan ◽  
Akhil Verma ◽  
...  

Background: Maize-wheat is the predominant cropping system of dryland ecology of Jammu region, but due to their comparatively higher input requirements especially of nutrients and water under the fragile ecology of these dry lands an untenable threat has been posed to their factor productivities. Therefore, all cropping sequences that suit and sustain better on the natural resources of the dryland ecosystems for a longer period of time needs to be explored.Methods: The treatments consisted of two oilseeds i.e. mustard) and gobhi sarson and two pulse crops i.e. chickpea and field pea taken during rabi were followed by two oilseed i.e. soybean and sesame and two pulse crops i.e. green gram and black gram grown during kharif. The experiment was laid out in randomized block design with four replications.Result: Significantly higher chickpea equivalent yield of green gram was observed with field pea- green gram sequence (10.26 q/ha) which was at par with the chickpea – green gram and field pea - black gram system. The available nitrogen status was significantly influenced and recorded highest (166.82kg/ha) under field pea- green gram system. Further overall nutrient mining by this system was quite low as compared to other systems.


2018 ◽  
Vol 85 (0) ◽  
Author(s):  
Suzete Fernandes Lima ◽  
Leandro Spíndola Pereira ◽  
Gustavo Dorneles Sousa ◽  
Simonny Araújo Vasconcelo ◽  
Adriano Jakelaitis ◽  
...  

ABSTRACT: The use of herbicide underdoses allows minimizing the competition of grasses on annual crops, enabling simultaneous cultivation. In this context, the objective of this study was to investigate glyphosate underdoses on the suppression of the initial growth of three Panicum maximum cultivars aiming at the integrated cultivation, in addition to the effects of forage species on the incidence and development of weeds. Three field experiments were conducted. The experimental design was a randomized block design with four replications and eight treatments consisting of increasing glyphosate doses (0, 54, 108, 270, 378, 540, 756, and 1,080 g a.e. ha−1). An atrazine dose of 1,200 g a.i. ha−1 was added to each treatment. Plant phytotoxicity assessments were performed at 7, 14, 21, and 28 days after application. At 80 and 125 days after sowing, the assessments of total dry matter production, leaf dry matter, stem dry matter, and leaf to stem ratio were carried out, in addition to density and dry matter production of weed community. Glyphosate underdoses below 215, 65, and 90 g a.e. ha-1 have a potential to be investigated aiming at the management of P. maximum cv. Atlas, P. maximum cv. Mombasa, and P. maximum cv. Tanzania under intercropping. The three forage species are effective in suppressing weeds.


Sign in / Sign up

Export Citation Format

Share Document