Analyzing Data from the Olympic Games for Trends and Inferences

1996 ◽  
Vol 89 (5) ◽  
pp. 370-372
Author(s):  
Richard T. Edgerton

The NCTM's Curriculum and Evaluation Standards for School Mathematics (1989) emphasizes classroom mathematics that engages students in meaningful activities through which they construct their own understanding of important concepts. Students' investigations are derived from problem situations that arise from real-world contexts. The Olympic Games furnish ample data for students to connect meaningful mathematics with real-world problems.

1999 ◽  
Vol 5 (7) ◽  
pp. 390-394
Author(s):  
Robyn Silbey

In An Agenda for Action, the NCTM asserted that problem solving must be at the heart of school mathematics (1980). Almost ten years later, the NCTM's Curriculum and Evaluation Standards for School Mathematics (1989) stated that the development of each student's ability to solve problems is essential if he or she is to be a productive citizen. The Standards assumed that the mathematics curriculum would emphasize applications of mathematics. If mathematics is to be viewed as a practical, useful subject, students must understand that it can be applied to various real-world problems, since most mathematical ideas arise from the everyday world. Furthermore, the mathematics curriculum should include a broad range of content and an interrelation of that content.


1995 ◽  
Vol 88 (3) ◽  
pp. 200-202
Author(s):  
Richard T. Edgerton

One way to apply the principles of the Curriculum and Evaluation Standards for School Mathematics (NCTM 1989) is to use real-world problems. The curriculum standards are enacted as students develop “mathematical power” while they communicate, reason, and make connections within and outside mathematics.


1993 ◽  
Vol 40 (5) ◽  
pp. 292-295
Author(s):  
Janet Parker ◽  
Connie Carroll Widmer

Of fall the topics in the K-8 curriculum, perhaps none requires a more active, hands-on approach than does measurement. As advocated in the Curriculum and Evaluation Standards for School Mathematics (NCTM 1989), essential concepts and skills must be developed by engaging students in examining, measuring, comparing, and contrasting a wide variety of shapes. Students must use measurements to investigate and solve real-world problems: “Measurement activities can and should require a dynamic interaction between students and their environment” (NCTM 1989, 116). Formulas should be de-emphasized as activities focus on exploration and estimation. Yet even in activities that focus on actively measuring concrete objects, calculators and computers are valuable tools for recording and organizing data and for extending measurement patterns to pose and test hypotheses.


1995 ◽  
Vol 88 (1) ◽  
pp. 18-22
Author(s):  
Thomas Edwards

Given the recent public mania over bungee jumping, stimulating students' interest in a model of that situation should be an easy “leap.” Students should investigate the connections among various mathematical representations and their relationships to applications in the real world, asserts the Curriculum and Evaluation Standards for School Mathematics (NCTM 1989). Mathematical modeling of real-world problems can make such connections more natural for students, the standards document further indicates. Moreover, explorations of periodic real-world phenomena by all students, as well as the modeling of such phenomena by college-intending students, is called for by Standard 9: Trigonometry.


1993 ◽  
Vol 86 (8) ◽  
pp. 657-661
Author(s):  
Peter L. Glidden ◽  
Erin K. Fry

The reforms proposed in the NCTM's Curriculum and Evaluation Standards (1989) call for specific changes in the grades 9-12 mathematics curriculum, as well as for general themes that should be emphasized throughout the curriculum. In particular, the standards document calls for including topics from discrete mathematics and three-dimensional geometry, and it calls for increased emphasis on paragraph-style proofs. Overall, these and other topics should be taught with the ultimate goals of illustrating mathematical connections and constructing mathematical models to solve real-world problems.


1990 ◽  
Vol 83 (4) ◽  
pp. 264-268
Author(s):  
Stanley F. Taback

In calling for reform in the teaching and learning of mathematics, the Curriculum and Evaluation Standards for School Mathematics (Standards) developed by NCTM (1989) envisions mathematics study in which students reason and communicate about mathematical ideas that emerge from problem situations. A fundamental premise of the Standards, in fact, is the belief that “mathematical problem solving … is nearly synonymous with doing mathematics” (p. 137). And the ability to solve problems, we are told, is facilitated when students have opportunities to explore “connections” among different branches of mathematics.


1999 ◽  
Vol 5 (7) ◽  
pp. 430-432
Author(s):  
Daniel J. Brahier ◽  
Melfried Olson

The Great Sphinx in Egypt is about 73.2 m (240 ft.) long, including the paws, which are each 15.3 m (50 ft.) long. Would one of its paws fit in a typical classroom? Would it fit in the school hallway? If the 90 800 kg (200 000 lbs.) of copper sheeting that make up the Statue of Liberty were melted down into pennies, how many pennies could be produced? How high would the pennies stand if they were stacked on one another? In which city and state would you find the world's largest ball of twine? Where would you find the world's largest catsup bottle? Such questions were the focus of the World's Largest Math Event 4— Landmarks: Seeing the World by Numbers— in April 1998. All over the United States and throughout the world, tens of thousands of students, from kindergarten through college, participated in the event. With the emphasis that the NCTM's Curriculum and Evaluation Standards for School Mathematics (1989) places on having students use real-world phenomena as a context for the study of mathematics, the World's Largest Math Event is a popular program.


1997 ◽  
Vol 90 (8) ◽  
pp. 686-688

Mathematical modeling is an emerging theme in mathematics education. In addition to giving students a knowledge of the applications of mathematics and a process for applying mathematics in the “real” world, modeling offers teachers an excellent vehicle for introducing and developing students' mathematical knowledge. For these reasons, modeling occupies a prominent place in the recommendations of the Curriculum and Evaluation Standards for School Mathematics (NCTM 1989).


1997 ◽  
Vol 90 (3) ◽  
pp. 194-200
Author(s):  
Lydotta M. Taylor ◽  
Joann L. King

The NCTM's Curriculum and Evaluation Standards for School Mathematics (1989) encourages teachers to include activities that help students “construct and draw inferences from charts, tables, and graphs that summarize data from real-world situations” (p. 167) and “express mathematical ideas orally and in writing” (p. 140). The following activities combine data gathering and analysis with cooperative learning, mathematical connections, reasoning, problem solving, and communication.


Sign in / Sign up

Export Citation Format

Share Document