scholarly journals Inoculum Level and Inoculation Method Influences on the Pathogenic Activities of Meloidogyne incognita in Studied Model Plant Okra (Abelmoschus esculentus L. Moench)

Author(s):  
Yadom Y. F. R. Kouakou ◽  
Kouamé Daniel Kra ◽  
Hortense Atta Diallo

Agricultural activities such as watering crops with nematode-infested water from wells and boreholes, and using infected plant debris as manure or mulch increase root-knot nematode infection. So, this study aims at assessing the influence of the inoculation method and inoculum level of Meloidogyne incognita on the development of root galls on okra plants. Two M. incognita inoculation methods (suspension of individuals and galled root explants) and six inoculum levels (0, 10, 100, 500, 1000 and 2000 second-stage larvae/plant) were studied. The gall index, total numbers and reproductive factor of M. incognita were used to assess the effect of treatments on root gall development. Unlike the reproductive factor, gall index and the total numbers of M. incognita increased with their inoculum level. The pathogenic activities of M. incognita were most significant when crop soils were infested with galled root explants. However, an inverse relationship was found between the inoculum levels of M. incognita and the okra plant’s development. It is reflected by negative correlation coefficients ranging from -0.90 to -0.62. It is therefore important to burn roots infected with root-knot nematodes left in fields so that they do not act as an inoculum for crops.

2020 ◽  
Vol 3 (2) ◽  
pp. 21-31
Author(s):  
Sudeep Subedi ◽  
Bihani Thapa ◽  
Jiban Shrestha

Root-knot nematode (RKN) Meloidogyne incognita stands out among the most harmful polyphagous endoparasite causing serious harm to plants, and distributed all over the globe. RKN causes reduced growth, quality and yield along with reduced resistance of the host against biotic and abiotic stresses. Infective second stage juvenile enters host roots with the help of the stylet and becomes sedentary getting into the vascular cylinder. Dramatic changes occur in host cells, making a specialized feeding site, induced by the secretion of effector protein by RKN. M. incognita can be controlled by nematicides, biocontrol agents, botanicals essential oils and growing resistant cultivars. Nematicides are no longer allowed to use in many parts of the world because of environmental hazards and toxicity to humans and other organisms. Researchers are concentrating on searching suitable alternatives to nematicides for effective management of M. incognita. This review mainly tries to explain the biology of M. incognita and different management options recommended in recent years. However, an effective and economical management of M. incognita remains an immense challenge.


Nematology ◽  
2011 ◽  
Vol 13 (5) ◽  
pp. 509-520 ◽  
Author(s):  
Tushar K. Dutta ◽  
Stephen J. Powers ◽  
Brian R. Kerry ◽  
Hari S. Gaur ◽  
Rosane H.C. Curtis

AbstractThe rice root-knot nematode Meloidogyne graminicola normally infects rice, wheat and several other graminaceous plants. Meloidogyne incognita is a serious pest of dicotyledonous crops, although it can infect and reproduce on some cereals. This paper demonstrates and compares host recognition, development and reproduction of these two species of root-knot nematodes on rice and tomato plants. Attraction bioassays in pluronic gel clearly showed that M. incognita preferred tomato roots to rice or mustard roots, whilst M. graminicola was more attracted towards rice compared with tomato or mustard roots. Based on the attraction data from this study, it can be hypothesised that either: i) the blend of attractants and repellents are different in good and poor hosts; or ii) relatively long-range attractants, together with shorter-range repellents, might affect nematode movement patterns. Some host specific attractants might also be involved. Meloidogyne incognita was able to invade and develop to adult female but did not produce eggs in rice roots. By contrast, M. graminicola developed and reproduced faster on both rice and tomato plants compared with M. incognita. Nevertheless, second-stage juveniles of both these root-knot nematodes showed a similar pattern of distribution inside the roots, preferring to accumulate at the root tips of rice or in the vascular cylinder and cortical region of tomato.


2017 ◽  
Vol 9 (2) ◽  
pp. 1090-1096
Author(s):  
Ramandeep Kaur ◽  
K. K. Chahal ◽  
N. K. Dhillon ◽  
Urvashi Bhardwaj

Nematicidal potential of chloroform root extract of Inula racemosa and its fractions was investigated on egg hatching and mortality of root knot nematode Meloidogyne incognita. Egg masses and second stage juveniles (J2) of M. incognita were exposed to different concentrations (0.1-8.0 mg ml-1) of I. racemosa root extract and its fractions. Observations on egg hatch were recorded on 1st, 3rd, 5th, 7th and 9th day and those of mortality studies were recorded on 2nd, 4th, 6th, 8th and 10th day, respectively. Significant mortality as well as egg hatch inhibition was observed for all the tested components at 5 %. The root extract was found to be most effective in controlling egg hatching as complete inhibition was observed at 8.0 mg ml-1 concentration on 1stday of treatment and nonpolar fraction was most effective in causing mortality of J2 of M. incognita as 100 % inhibition was observed at 6.0 and 8.0 mg ml-1 concentration on 2nd day of treatment. Maximum inhibition of egg hatching was observed for root extract at 8.0 mg ml-1 concentration and 100 % mortality was observed for root extract as well as nonpolar fraction at the same concentration. The nonpolar fraction was most effective in causing mortality as maximum mortality was observed at 6.0 and 8.0 mg ml-1 concentration throughout the exposure time. Polar fraction was least effective among all the components both in egg hatch inhibition and J2 mortality of M. incognita. Both the activities showed concentrations as well as time dependence. Results show different role of tested components on egg hatching and mortality of root knot nematode. The root extract of I. racemosa and its fractions showed a potential to develop new nematicide.


Author(s):  
J. I. Oluwatayo ◽  
C. I. Jidere ◽  
A. Nwankiti

Tomato (Solanum lycopersicum L.) is an important and widely grown vegetable crop all over the world. Although tomato is nutritionally and economically important, its production is constrained by biotic and abiotic constraints leading to poor marketable quantity and quality worldwide. Root-knot nematodes are one of the major pests affecting tomato production worldwide, especially, in the tropical and sub-tropical regions. Green house experiments were laid out in Complete Block Design (CBD) with a 3x7 factorial arrangement replicated three times carried out at the Department of Crop and Environmental Protection, University of Agriculture. The soil was sterilized before the experiment. Fresh leaves and seeds of Moringa oleifera, Ricinus communis  and Jatropha curcas were washed with tap water, 15 g  from each of leaves and seeds of the different botanicals was macerated separately in an electric blender at high speed for 4 minutes in 100 ml distilled water. The mixtures were passed through a Whatman filter paper number 1; the filtrates of the leaves/seeds were then collected. Three tomato varieties viz: Roma Vf, Rio Grande and UC82B were inoculated with approximately 5,000 freshly hatched second stage juvenile of Meloidogyne incognita, two weeks after transplanting.  Thirty percent aqueous extract each  of Castor, Moringa and Jatropha leaves and seeds was used, while double distilled water (0%) served as the control. Thirty ml of   each leaf and seed aqueous extract was applied, 48 hours after inoculation as soil drench. Application was done at 1 weeks intervals thereafter for a period of 16 weeks. Data collected include number of fruits per plant, root gall index, nematode reproductive factor, and final nematode population. The results showed that various Moringa oleifera, Ricinus communis  and Jatropha curcas leaves and seed extracts significantly (P<0.05) reduced root gall index, final population of M. incognita in the soil and nematode reproductive factor than the control. Application of the various treatments Moringa oleifera, Ricinus communis  and Jatropha curcas led to significant increase in mean number of fruits and mean fruit weight yield of all the three tomato varieties. Therefore, the application of leaf and seed aqueous extracts of Moringa, Jatropha and Castor will serve as good alternative for the management of root knot nematode Meloidogyne incognita.


Nematology ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 489-496 ◽  
Author(s):  
Gaku Murata ◽  
Tomoyuki Takai ◽  
Kenta Uesugi

Summary Commercially available sorghum cultivars were tested for resistance to Meloidogyne incognita in order to select cultivars that combine fodder production with M. incognita population management. Initially in a pot test with 12 sorghum cultivars, ‘Kyushuko 3 go’, a sorghum hybrid, supported very low M. incognita reproduction approximately 40 days after inoculation (dai) with 500 second-stage juveniles (J2) pot−1, similar to the resistant green manure ‘Tsuchitaro’. Further tests for development of M. incognita in roots (20 dai with 150 J2 (root system)−1) indicated that the resistance of ‘Kyushuko 3 go’ acts after nematode root penetration. In field tests in 2015 and 2016, ‘Kyushuko 3 go’ suppressed M. incognita population densities, although some variations in field conditions may influence reproduction of M. incognita on ‘Kyushuko 3 go’. These findings demonstrated M. incognita-resistant fodder sorghum cultivars could be a useful alternative to susceptible cultivars for root-knot nematode management.


Plant Disease ◽  
2019 ◽  
Vol 103 (5) ◽  
pp. 853-858 ◽  
Author(s):  
Mychele B. Da Silva ◽  
Richard F. Davis ◽  
Pawan Kumar ◽  
Robert L. Nichols ◽  
Peng W. Chee

Quantitative trait loci (QTLs) qMi-C11 and qMi-C14 impart a high level of resistance to Meloidogyne incognita in cotton. Breeders had previously backcrossed both QTLs into the susceptible Coker 201 to create the highly resistant M-120 RNR, and we crossed Coker 201 and M-120 RNR to create near-isogenic lines with either qMi-C11 or qMi-C14. Previous work suggests different modes of action for qMi-C11 and qMi-C14. To document individual and combined effects of the QTLs on nematode development and reproduction, Coker 201 (neither QTL), M-120 RNR (both QTLs), CH11 near isoline (qMi-C11), and CH14 near isoline (qMi-C14) were inoculated with M. incognita. At 4, 8, 12, 16, 20, 25, and 30 days after inoculation (DAI), roots were stained to observe nematode developmental stages (second-stage juvenile [J2], swollen second-stage juvenile [SJ2], third-stage juvenile [J3], fourth-stage juvenile [J4], and female), and the number of galls was counted. At 20, 25, 30, and 40 DAI, M. incognita eggs were harvested and counted. At 30 DAI, 80% of the nematodes on Coker 201 were female compared with 50, 40, and 33% females on CH14, CH11, and M-120 RNR, respectively, and greater proportions of nematodes remained in J2 in M-120 RNR (41%), CH11 (58%), and CH14 (27%) than in Coker 201 (9%). More nematodes progressed to J3 or J4 on Coker 201 and CH14 than on CH11 or M-120 RNR. Coker 201 and CH14 had more galls than M-120 RNR. Coker 201 had more eggs than the other genotypes at 30 DAI. Nematode development beyond J2 or SJ2 was significantly reduced by qMi-C11, and development beyond J3 or J4 was significantly reduced by qMi-C14. This study confirms that qMi-C11 and qMi-C14 act at different times and have different effects on the development of M. incognita, and therefore, they have different modes of action.


Nematology ◽  
2007 ◽  
Vol 9 (6) ◽  
pp. 845-851 ◽  
Author(s):  
Maria Célia Cordeiro ◽  
Regina Carneiro ◽  
Pedro Cirotto ◽  
Luiz de Mesquita ◽  
Maria Ritta Almeida ◽  
...  

AbstractAn obligate parasite bacterium of the root-knot nematode, Pasteuria penetrans strain P10, isolated from Meloidogyne incognita females on banana roots in Imperatriz Maranhão State, Brazil, was evaluated in glasshouse conditions, using two doses of a dry root bionematicide (107 endospores (5.0 g/seedling) and 106 endospores (0.5 g/seedling)) on seedlings of cv. Mundo Novo coffee. The soil in which coffee seedlings were raised was inoculated previously with these two doses of P. penetrans and after 2 months the plants were transferred to soils of different textures: clay-sandy soil (38% clay, 2% silt and 60% sand) and sandy soil (17% clay, 0% silt and 83% sand). When the coffee plants were 30 cm high, they were inoculated with 20 000 eggs/plant of M. incognita race 1. The coffee plants were examined 8, 16 and 24 months after nematode plant infestation. The effectiveness of the biological control was determined by the reduction of nematode reproduction factor, which ranged from 62 to 67% in clay-sandy soil and 80 to 85% in sandy soil. The mechanism of suppression caused by the bacterium was evaluated by the percentage of infected second-stage juveniles (J2), number of endospores attached/J2 and number of infected females. The high levels of suppression were related to time, increasing from 8 to 24 months, and to the percentage of sand in the soil.


2007 ◽  
Vol 25 (1) ◽  
pp. 73 ◽  
Author(s):  
Sunil K. Singh ◽  
Uma R. Khurma

Six tomato cultivars Moneymaker, Beefsteak, Roma, Summertaste, Mini Roma and Smallfry were tested for their susceptibility to root- knot nematodes at inoculum levels of 200, 400, 600 Juveniles (J2) per pot. All were found to be susceptible to varying degrees as egg masses were present in all with Moneymaker and Roma being the most susceptible and Mini Roma, the least susceptible. The inoculum levels had a significant effect (p<0.05) on the number of galls and plant weights. The gall numbers and plant weights was negatively correlated, with the highest gall numbers and lowest plant weights recorded at the highest inoculum level in all cultivars except in Mini Roma in which there was little variation in gall numbers and plant weights.


1970 ◽  
Vol 36 (3) ◽  
pp. 477-486 ◽  
Author(s):  
MI Faruk ◽  
MI Rahman ◽  
MR Ali ◽  
MM Rahman ◽  
MMH Mustafa

A field experiment was conducted in two consecutive years to find out the efficacy of poultry refuse (PR), mustard oilcake (MOC), and Furadan 5G for the management of root-knot disease (Meloidogyne incognita) of tomato. Soil was treated with PR @ 3 and 5 t/ha, MOC @ 0.3 and 0.6 t/ha 3 weeks before transplanting and Furadan 5G @ 40 kg/ha on the day of transplanting of tomato seedlings. PR @ 3 t/ha and MOC @0.3 t/ha were applied alone and also mixed with Furadan 5G @ 20 kg/ha. The soils of the experimental plots were inoculated with chopped severely galled (M incognita) roots of tomato at the time of treatment application. In both the years, considerable reduction in rootknot disease and increase in plant growth and fruit yield were achieved with different treatments with two organic materials applied alone or mixed with Furadan 5G. The most effective treatment was PR @ 3 t/ha + Furadan 5G @ 20 kg/ha followed by PR alone @ 5 t/ha. Efficacy of PR @ 3 t/ha and MOC @ 0.6 1/ha were also appreciable. In first year and second year, gall index values were 6.50 and 6.27 under control, respectively. The severity was reduced to 2.27-4.00 in first year and 1.73-4.07 in second year due to application of the four treatments. On the other hand, fruit yield under control was 50.9 t/ha at first year and 47.6 t/ha in second year. The highly effective four treatments increased fruit yield to 71.1-82.5 t/ha in first year and 60.8-82.0 t/ha in second year. The fruit yield of tomato was directly and linearly correlated with gall indices in tomato gall. Based on findings of the study PR @ 3 t/ha + Furadan @20 kg/ha and PR alone @ 5 t/ha were noted as effective treatment to manage root-knot disease of tomato. Keywords: Poultry refuse; mustard oilcake; Furadan; Meloidogjyne incognita; tomato. DOI: http://dx.doi.org/10.3329/bjar.v36i3.9275 BJAR 2011; 36(3): 477-486


Sign in / Sign up

Export Citation Format

Share Document