Water‐Quality Engineering in Natural Systems

2021 ◽  
Author(s):  
David A Chin
Author(s):  
Richard H. McCuen ◽  
Carmen T. Agouridis

2014 ◽  
Vol 45 (6) ◽  
pp. 774-787 ◽  
Author(s):  
Oana Iacob ◽  
John S. Rowan ◽  
Iain Brown ◽  
Chris Ellis

Climate change is projected to alter river flows and the magnitude/frequency characteristics of floods and droughts. Ecosystem-based adaptation highlights the interdependence of human and natural systems, and the potential to buffer the impacts of climate change by maintaining functioning ecosystems that continue to provide multiple societal benefits. Natural flood management (NFM), emphasising the restoration of innate hydrological pathways, provides important regulating services in relation to both runoff rates and water quality and is heralded as a potentially important climate change adaptation strategy. This paper draws together 25 NFM schemes, providing a meta-analysis of hydrological performance along with a wider consideration of their net (dis) benefits. Increasing woodland coverage, whilst positively linked to peak flow reduction (more pronounced for low magnitude events), biodiversity and carbon storage, can adversely impact other provisioning service – especially food production. Similarly, reversing historical land drainage operations appears to have mixed impacts on flood alleviation, carbon sequestration and water quality depending on landscape setting and local catchment characteristics. Wetlands and floodplain restoration strategies typically have fewer disbenefits and provide improvements for regulating and supporting services. It is concluded that future NFM proposals should be framed as ecosystem-based assessments, with trade-offs considered on a case-by-case basis.


2019 ◽  
Vol 26 (3) ◽  
pp. 475-491
Author(s):  
Zahra Ghofrani ◽  
Victor Sposito ◽  
Robert Faggian

Abstract Storm-water management is a common concern in rural catchments where development-related growth causes increases of storm-water flows. Greater magnitude and frequency of storm-water create greater challenges for mitigating storm-water damage and improving water quality. The concept of Blue-Green Infrastructure (BGI) as a solution incorporates a wide range of applicable components with the aim of minimizing the effect of catchment development on flow regimes without changing the watershed morphology. BGI components manage storm-water by decreasing impermeable cover and expanding natural and semi-natural systems to store water or recharge and filter storm-water into the ground. In this paper, guidelines for designing a pond as a component of BGI are provided and, configuration and size of the pond are determined. Moreover, the impacts of the designed pond on storm-water peak flow and quality are assessed for the Tarwin catchment, State of Victoria, Australia. The results indicate that the introduction of the pond would have reduced outfall inflow by 94 % and would have achieved the reduction of 88.3, 75.5 and 50.7 % for total suspended solids, total phosphorus, and total nitrogen respectively, during the extreme weather event in June 2012.


Sign in / Sign up

Export Citation Format

Share Document