Colloidal Self‐assembly of Block Copolymers for Drug Loading and Controlled Release

2022 ◽  
pp. 455-491
Author(s):  
Guangze Yang* ◽  
Yun Liu* ◽  
Chun‐Xia Zhao
RSC Advances ◽  
2021 ◽  
Vol 11 (48) ◽  
pp. 29986-29996
Author(s):  
Xiuxiu Qi ◽  
Hongmei Yan ◽  
Yingxue Li

A pH-sensitive core–shell nanoparticle (HMS@C18@PSDMA-b-POEGMA) was developed via a self-assembly process as the carrier of anticancer drug doxorubicin (DOX) for drug loading and controlled release.


2015 ◽  
Vol 6 (10) ◽  
pp. 1817-1829 ◽  
Author(s):  
Lichao Liu ◽  
Leilei Rui ◽  
Yun Gao ◽  
Weian Zhang

The synthesis and self-assembly of ferrocene-containing block copolymers PEG-b-PMAEFc, and the encapsulation and redox-responsive release of a model molecule (rhodamine B) upon external redox stimuli (H2O2).


Langmuir ◽  
2014 ◽  
Vol 30 (29) ◽  
pp. 8707-8716 ◽  
Author(s):  
Xueyi Chang ◽  
Renfeng Dong ◽  
Biye Ren ◽  
Zhiyu Cheng ◽  
Jun Peng ◽  
...  

2015 ◽  
Vol 6 (30) ◽  
pp. 5470-5477 ◽  
Author(s):  
Caner Geyik ◽  
Mustafa Ciftci ◽  
Bilal Demir ◽  
Bahar Guler ◽  
A. Burak Ozkaya ◽  
...  

Two amphiphilic star-hyperbranched copolymers with different hydrophilic PHEMA segments were synthesized, and their drug loading/release profiles were examined by using Paclitaxel.


Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 511 ◽  
Author(s):  
Jingjie Feng ◽  
Weiqiu Wen ◽  
Yong-Guang Jia ◽  
Sa Liu ◽  
and Jianwei Guo

One of the most famous anticancer drugs, paclitaxel (PTX), has often been used in drug controlled-release studies. The polymers derived from bio-compound bile acids and degradable poly(ε-caprolactone) (PCL) form a reservoir and have been used as a drug delivery system with great advantages. Herein, we grafted poly(N,N-diethylaminoethyl methacrylate) and poly(poly(ethylene glycol) methyl ether methacrylate) into the bile acid-derived three-armed macroinitiator CA-(PCL)3, resulting in the amphiphilic block copolymers CA-(PCL-b-PDEAEMA-b-PPEGMA)3. These pH-responsive three-armed block copolymers self-assembled into micelles in aqueous solution and PTX was encapsulated into the micellar core to form PTX-loaded micelles with a drug loading of 29.92 wt %. The micelles were stable in PBS at pH 7.4 and showed a pH-triggered release behavior of PTX under acidic environments, in which 55% of PTX was released at pH 5.0 in 80 h. These cholic acid-based functionalized three-armed block polymers present good biocompatibility, showing great potential for drug controlled-release.


2002 ◽  
Vol 724 ◽  
Author(s):  
Elizabeth R. Wright ◽  
R. Andrew McMillan ◽  
Alan Cooper ◽  
Robert P. Apkarian ◽  
Vincent P. Conticello

AbstractTriblock copolymers have traditionally been synthesized with conventional organic components. However, triblock copolymers could be synthesized by the incorporation of two incompatible protein-based polymers. The polypeptides would differ in their hydrophobicity and confer unique physiochemical properties to the resultant materials. One protein-based polymer, based on a sequence of native elastin, that has been utilized in the synthesis of biomaterials is poly (Valine-Proline-Glycine-ValineGlycine) or poly(VPGVG) [1]. This polypeptide has been shown to have an inverse temperature transition that can be adjusted by non-conservative amino acid substitutions in the fourth position [2]. By combining polypeptide blocks with different inverse temperature transition values due to hydrophobicity differences, we expect to produce amphiphilic polypeptides capable of self-assembly into hydrogels. Our research examines the design, synthesis and characterization of elastin-mimetic block copolymers as functional biomaterials. The methods that are used for the characterization include variable temperature 1D and 2D High-Resolution-NMR, cryo-High Resolutions Scanning Electron Microscopy and Differential Scanning Calorimetry.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 904
Author(s):  
Irin Tanaudommongkon ◽  
Asama Tanaudommongkon ◽  
Xiaowei Dong

Most antiretroviral medications for human immunodeficiency virus treatment and prevention require high levels of patient adherence, such that medications need to be administered daily without missing doses. Here, a long-acting subcutaneous injection of lopinavir (LPV) in combination with ritonavir (RTV) using in situ self-assembly nanoparticles (ISNPs) was developed to potentially overcome adherence barriers. The ISNP approach can improve the pharmacokinetic profiles of the drugs. The ISNPs were characterized in terms of particle size, drug entrapment efficiency, drug loading, in vitro release study, and in vivo pharmacokinetic study. LPV/RTV ISNPs were 167.8 nm in size, with a polydispersity index of less than 0.35. The entrapment efficiency was over 98% for both LPV and RTV, with drug loadings of 25% LPV and 6.3% RTV. A slow release rate of LPV was observed at about 20% on day 5, followed by a sustained release beyond 14 days. RTV released faster than LPV in the first 5 days and slower than LPV thereafter. LPV trough concentration remained above 160 ng/mL and RTV trough concentration was above 50 ng/mL after 6 days with one subcutaneous injection. Overall, the ISNP-based LPV/RTV injection showed sustained release profiles in both in vitro and in vivo studies.


Author(s):  
Weihua Li ◽  
Xueying Gu

Since tremendous progress has been made, directed self-assembly (DSA) of block copolymers has been regarded as one of the most promising bottom-up lithography techniques. In particular, DSA has been successfully...


2020 ◽  
Vol 2 (11) ◽  
pp. 4893-4901
Author(s):  
Karthika Madathil ◽  
Kayla A. Lantz ◽  
Morgan Stefik ◽  
Gila E. Stein

Sign in / Sign up

Export Citation Format

Share Document