Decentralized output feedback controller design for nonlinear interconnected systems with unknown control direction and time-varying delays

2013 ◽  
Vol 28 (11) ◽  
pp. 1160-1173 ◽  
Author(s):  
Changchun Hua ◽  
Liuliu Zhang ◽  
Xinping Guan
Author(s):  
HONGYUN YUE ◽  
JUNMIN LI

An adaptive fuzzy control scheme with only one adjusted parameter is developed for a class of nonlinear time-varying delays systems. Three kinds of uncertainties: time-varying delays, control directions, and nonlinear functions are all assumed to be completely unknown, which is different from the previous work. During the controller design procedure, appropriate Lyapunov-Krasovskii functionals are used to compensate the unknown time-varying delays terms and the Nussbaum-type function is used to detect the unknown control direction. It is proved that the proposed controller guarantees that all the signals in the closed-loop system are bounded and the tracking errors converge to a small neighborhood around zero. The two main advantages of the developed scheme are that (i) by combining the appropriate Lyapunov-Krasovskii functionals with the Nussbaum-gain technique, the control scheme is proposed for a class of nonlinear time-varying delays systems with unknown control directions, (ii) only one parameter needs to be adjusted online in controller design procedure, which reduces the computational burden greatly. Finally, two examples are used to show the effectiveness of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document