Magnetic/Fluorescent Barcodes Based on Cadmium-Free Near-Infrared-Emitting Quantum Dots for Multiplexed Detection

2016 ◽  
Vol 26 (42) ◽  
pp. 7581-7589 ◽  
Author(s):  
Yuankui Leng ◽  
Weijie Wu ◽  
Li Li ◽  
Kun Lin ◽  
Kang Sun ◽  
...  
2018 ◽  
Vol 13 (1) ◽  
pp. 112-116 ◽  
Author(s):  
Yanling Hu ◽  
Chun Deng ◽  
Yu He ◽  
Yili Ge ◽  
Gongwu Song

2016 ◽  
Vol E99.C (3) ◽  
pp. 381-384 ◽  
Author(s):  
Takuma YASUDA ◽  
Nobuhiko OZAKI ◽  
Hiroshi SHIBATA ◽  
Shunsuke OHKOUCHI ◽  
Naoki IKEDA ◽  
...  

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Caroline E. Reilly ◽  
Stacia Keller ◽  
Shuji Nakamura ◽  
Steven P. DenBaars

AbstractUsing one material system from the near infrared into the ultraviolet is an attractive goal, and may be achieved with (In,Al,Ga)N. This III-N material system, famous for enabling blue and white solid-state lighting, has been pushing towards longer wavelengths in more recent years. With a bandgap of about 0.7 eV, InN can emit light in the near infrared, potentially overlapping with the part of the electromagnetic spectrum currently dominated by III-As and III-P technology. As has been the case in these other III–V material systems, nanostructures such as quantum dots and quantum dashes provide additional benefits towards optoelectronic devices. In the case of InN, these nanostructures have been in the development stage for some time, with more recent developments allowing for InN quantum dots and dashes to be incorporated into larger device structures. This review will detail the current state of metalorganic chemical vapor deposition of InN nanostructures, focusing on how precursor choices, crystallographic orientation, and other growth parameters affect the deposition. The optical properties of InN nanostructures will also be assessed, with an eye towards the fabrication of optoelectronic devices such as light-emitting diodes, laser diodes, and photodetectors.


2021 ◽  
Author(s):  
Ziang Guo ◽  
Xiaowei Huang ◽  
Zhihua Li ◽  
Jiyong Shi ◽  
Xuetao Hu ◽  
...  

This paper describes a Near-infrared quantum dots (CuInS2 QDs)/antibiotics (vancomycin) nanoparticle-based assay for Staphylococcus aureus and iron(Ⅲ) detection. CuInS2 QDs with good biological tissue permeability and biocompatibility are combined with...


2019 ◽  
Vol 28 (12) ◽  
pp. 128504 ◽  
Author(s):  
Haochen Liu ◽  
Huaying Zhong ◽  
Fankai Zheng ◽  
Yue Xie ◽  
Depeng Li ◽  
...  

Author(s):  
Cong Shen ◽  
Yan Qing Zhu ◽  
Zixiao Li ◽  
Jingling Li ◽  
Hong Tao ◽  
...  

InP quantum dots (QDs) are considered as the most promising alternative to Cd-based QDs with the lower toxicity and emission spectrum tunability ranging from visible to near-infrared region. Although high-quality...


Author(s):  
Yun Zhao ◽  
Xiaoqiang Feng ◽  
Menghan Zhao ◽  
Xiaohu Zheng ◽  
Zhiduo Liu ◽  
...  

Employing C3N QD-integrated single-crystal graphene, photodetectors exhibited a distinct photocurrent response at 1550 nm. The photocurrent map revealed that the fast response derive from C3N QDs that enhanced the local electric field near graphene.


2021 ◽  
pp. 1-1
Author(s):  
Aigerim Tankimanova ◽  
Chun Hong Kang ◽  
Omar Alkhazragi ◽  
Haodong Tang ◽  
Meiwei Kong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document