High Throughput Blood Analysis Based on Deep Learning Algorithm and Self‐Positioning Super‐Hydrophobic SERS Platform for Non‐Invasive Multi‐Disease Screening

2021 ◽  
pp. 2103382
Author(s):  
Xueliang Lin ◽  
Duo Lin ◽  
Yang Chen ◽  
Jincheng Lin ◽  
Shuyun Weng ◽  
...  
2021 ◽  
Author(s):  
Jae-Seung Yun ◽  
Jaesik Kim ◽  
Sang-Hyuk Jung ◽  
Seon-Ah Cha ◽  
Seung-Hyun Ko ◽  
...  

Objective: We aimed to develop and evaluate a non-invasive deep learning algorithm for screening type 2 diabetes in UK Biobank participants using retinal images. Research Design and Methods: The deep learning model for prediction of type 2 diabetes was trained on retinal images from 50,077 UK Biobank participants and tested on 12,185 participants. We evaluated its performance in terms of predicting traditional risk factors (TRFs) and genetic risk for diabetes. Next, we compared the performance of three models in predicting type 2 diabetes using 1) an image-only deep learning algorithm, 2) TRFs, 3) the combination of the algorithm and TRFs. Assessing net reclassification improvement (NRI) allowed quantification of the improvement afforded by adding the algorithm to the TRF model. Results: When predicting TRFs with the deep learning algorithm, the areas under the curve (AUCs) obtained with the validation set for age, sex, and HbA1c status were 0.931 (0.928-0.934), 0.933 (0.929-0.936), and 0.734 (0.715-0.752), respectively. When predicting type 2 diabetes, the AUC of the composite logistic model using non-invasive TRFs was 0.810 (0.790-0.830), and that for the deep learning model using only fundus images was 0.731 (0.707-0.756). Upon addition of TRFs to the deep learning algorithm, discriminative performance was improved to 0.844 (0.826-0.861). The addition of the algorithm to the TRFs model improved risk stratification with an overall NRI of 50.8%. Conclusions: Our results demonstrate that this deep learning algorithm can be a useful tool for stratifying individuals at high risk of type 2 diabetes in the general population.


2021 ◽  
Vol 13 (9) ◽  
pp. 1779
Author(s):  
Xiaoyan Yin ◽  
Zhiqun Hu ◽  
Jiafeng Zheng ◽  
Boyong Li ◽  
Yuanyuan Zuo

Radar beam blockage is an important error source that affects the quality of weather radar data. An echo-filling network (EFnet) is proposed based on a deep learning algorithm to correct the echo intensity under the occlusion area in the Nanjing S-band new-generation weather radar (CINRAD/SA). The training dataset is constructed by the labels, which are the echo intensity at the 0.5° elevation in the unblocked area, and by the input features, which are the intensity in the cube including multiple elevations and gates corresponding to the location of bottom labels. Two loss functions are applied to compile the network: one is the common mean square error (MSE), and the other is a self-defined loss function that increases the weight of strong echoes. Considering that the radar beam broadens with distance and height, the 0.5° elevation scan is divided into six range bands every 25 km to train different models. The models are evaluated by three indicators: explained variance (EVar), mean absolute error (MAE), and correlation coefficient (CC). Two cases are demonstrated to compare the effect of the echo-filling model by different loss functions. The results suggest that EFnet can effectively correct the echo reflectivity and improve the data quality in the occlusion area, and there are better results for strong echoes when the self-defined loss function is used.


Sign in / Sign up

Export Citation Format

Share Document