Contact‐Free Remote Manipulation of Hydrogel Properties Using Light‐Triggerable Nanoparticles: A Materials Science Perspective for Biomedical Applications

2022 ◽  
pp. 2102088
Author(s):  
Cho‐E Choi ◽  
Aishik Chakraborty ◽  
Ali Coyle ◽  
Yasmeen Shamiya ◽  
Arghya Paul
2018 ◽  
Author(s):  
Mahendran Subramanian ◽  
Arkadiusz Miaskowski ◽  
Stuart Iain Jenkins ◽  
Jenson Lim ◽  
Jon Dobson

AbstractThe manipulation of magnetic nanoparticles (MNPs) using an external magnetic field, has been demonstrated to be useful in various biomedical applications. Some techniques have evolved utilizing this non-invasive external stimulus but the scientific community widely adopts few, and there is an excellent potential for more novel methods. The primary focus of this study is on understanding the manipulation of MNPs by a time-varying static magnetic field and how this can be used, at different frequencies and displacement, to manipulate cellular function. Here we explore, using numerical modeling, the physical mechanism which underlies this kind of manipulation, and we discuss potential improvements which would enhance such manipulation with its use in biomedical applications, i.e., increasing the MNP response by improving the field parameters. From our observations and other related studies, we infer that such manipulation depends mostly on the magnetic field gradient, the magnetic susceptibility and size of the MNPs, the magnet array oscillating frequency, the viscosity of the medium surrounding MNPs, and the distance between the magnetic field source and the MNPs. Additionally, we demonstrate cytotoxicity in neuroblastoma (SH-SY5Y) and hepatocellular carcinoma (HepG2) cells in vitro. This was induced by incubation with MNPs, followed by exposure to a magnetic field gradient, physically oscillating at various frequencies and displacement amplitudes. Even though this technique reliably produces MNP endocytosis and/or cytotoxicity, a better biophysical understanding is required to develop the mechanism used for this precision manipulation of MNPs, in vitro.


2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Dinesh K. Patel ◽  
Yu-Ri Seo ◽  
Ki-Taek Lim

Stimuli-responsive materials, also known as smart materials, can change their structure and, consequently, original behavior in response to external or internal stimuli. This is due to the change in the interactions between the various functional groups. Graphene, which is a single layer of carbon atoms with a hexagonal morphology and has excellent physiochemical properties with a high surface area, is frequently used in materials science for various applications. Numerous surface functionalizations are possible for the graphene structure with different functional groups, which can be used to alter the properties of native materials. Graphene-based hybrids exhibit significant improvements in their native properties. Since functionalized graphene contains several reactive groups, the behavior of such hybrid materials can be easily tuned by changing the external conditions, which is very useful in biomedical applications. Enhanced cell proliferation and differentiation of stem cells was reported on the surfaces of graphene-based hybrids with negligible cytotoxicity. In addition, pH or light-induced drug delivery with a controlled release rate was observed for such nanohybrids. Besides, notable improvements in antimicrobial activity were observed for nanohybrids, which demonstrated their potential for biomedical applications. This review describes the physiochemical properties of graphene and graphene-based hybrid materials for stimuli-responsive drug delivery, tissue engineering, and antimicrobial applications.


Nanomaterials ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 916 ◽  
Author(s):  
Georges Chedid ◽  
Ali Yassin

Materials science has seen a great deal of advancement and development. The discovery of new types of materials sparked the study of their properties followed by applications ranging from separation, catalysis, optoelectronics, sensing, drug delivery and biomedicine, and many other uses in different fields of science. Metal organic frameworks (MOFs) and covalent organic frameworks (COFs) are a relatively new type of materials with high surface areas and permanent porosity that show great promise for such applications. The current study aims at presenting the recent work achieved in COFs and MOFs for biomedical applications, and to examine some challenges and future directions which the field may take. The paper herein surveys their synthesis, and their use as Drug Delivery Systems (DDS), in non-drug delivery therapeutics and for biosensing and diagnostics.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yifeng Shi ◽  
Xuyao Han ◽  
Shuang Pan ◽  
Yuhao Wu ◽  
Yuhan Jiang ◽  
...  

Recently, as our population increasingly ages with more pressure on bone and cartilage diseases, bone/cartilage tissue engineering (TE) have emerged as a potential alternative therapeutic technique accompanied by the rapid development of materials science and engineering. The key part to fulfill the goal of reconstructing impaired or damaged tissues lies in the rational design and synthesis of therapeutic agents in TE. Gold nanomaterials, especially gold nanoparticles (AuNPs), have shown the fascinating feasibility to treat a wide variety of diseases due to their excellent characteristics such as easy synthesis, controllable size, specific surface plasmon resonance and superior biocompatibility. Therefore, the comprehensive applications of gold nanomaterials in bone and cartilage TE have attracted enormous attention. This review will focus on the biomedical applications and molecular mechanism of gold nanomaterials in bone and cartilage TE. In addition, the types and cellular uptake process of gold nanomaterials are highlighted. Finally, the current challenges and future directions are indicated.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Apurba Das ◽  
Pamu Dobbidi ◽  
Aman Bhardwaj ◽  
Varun Saxena ◽  
Lalit M. Pandey

AbstractThe article investigates electrically active ceramic composite of $$\mathrm{Ca}_{10}(\mathrm{PO}_4)_6(\mathrm{OH})_2$$ Ca 10 ( PO 4 ) 6 ( OH ) 2 (HAP) and $$\mathrm{Ba}_{0.5}\mathrm{Sr}_{0.5}\mathrm{TiO}_{3}$$ Ba 0.5 Sr 0.5 TiO 3 (BST) for biomedical applications. The study is a systematic blend of the materials science aspect of composites with a special focus on the dielectric and biological properties and their relationships. The article emphasized primarily extracting the dielectric constant ($$\epsilon _r)$$ ϵ r ) of the specimens (that lay in the range of 3–65) and related them to microstructural properties like the grain size and at.% of BST. A broad outlook on the importance of $$\epsilon _r$$ ϵ r in determining the suitability of bioceramics for clinical applications is presented. Bioactivity analysis of the specimens led to probing the surface charges (that were negative), and it was found crucial to the growth of dense apatite layers. Furthermore, the cytocompatibility of the specimens displayed cell viability above 100% for Day 1, which increased substantially for Day 3. To reveal other biological properties of the composites, protein adsorption studies using bovine serum albumin (BSA) and fetal bovine serum (FBS) was carried out. Electrostatic interactions govern the adsorption, and the mathematical dependence on surface charges is linear. The protein adsorption is also linearly correlated with the $$\epsilon _r$$ ϵ r , intrinsic to the biomaterials. We delve deeper into protein–biomaterials interactions by considering the evolution of the secondary structure of BSA adsorbed into the specimens. Based on the investigations, 20 at.% HAP–80 at.% BST (20H–80B) was established as a suitable composite comprising the desired features of HAP and BST. Such explorations of electrical and biological properties are interesting for modulating the behavior of bioceramic composites. The results project the suitability of 20H–80B for designing electrically active smart scaffolds for the proposed biomedical applications and are expected to incite further clinical trials.


Nanomaterials ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1435 ◽  
Author(s):  
Gang Wei ◽  
Coucong Gong ◽  
Keke Hu ◽  
Yabin Wang ◽  
Yantu Zhang

Hydroxyapatite (HA) has been widely used in fields of materials science, tissue engineering, biomedicine, energy and environmental science, and analytical science due to its simple preparation, low-cost, and high biocompatibility. To overcome the weak mechanical properties of pure HA, various reinforcing materials were incorporated with HA to form high-performance composite materials. Due to the unique structural, biological, electrical, mechanical, thermal, and optical properties, graphene has exhibited great potentials for supporting the biomimetic synthesis of HA. In this review, we present recent advance in the biomimetic synthesis of HA on graphene supports for biomedical applications. More focuses on the biomimetic synthesis methods of HA and HA on graphene supports, as well as the biomedical applications of biomimetic graphene-HA nanohybrids in drug delivery, cell growth, bone regeneration, biosensors, and antibacterial test are performed. We believe that this review is state-of-the-art, and it will be valuable for readers to understand the biomimetic synthesis mechanisms of HA and other bioactive minerals, at the same time it can inspire the design and synthesis of graphene-based novel nanomaterials for advanced applications.


Chemosensors ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 267
Author(s):  
Iván Torres-Moya ◽  
José Ramón Carrillo ◽  
Ángel Díaz-Ortiz ◽  
Pilar Prieto

Multifunctionality is a desirable aspect in materials science. Indeed, the development of multifunctional compounds is crucial for sustainable chemistry by saving resources and time. In this sense, 2H-benzo[d]1,2,3-triazole (BTz) is an excellent candidate with promising characteristics, including its ability to self-assemble; its acceptor character, which enables the synthesis of donor-acceptor structures; and its facile modulation using standard chemical methods. Thus, due to its interesting properties, it is possible to produce different derivatives with applications in different fields, as summarized in this article, with the correct substitution at the BTz cores. Optoelectronic or biomedical applications, amongst others, are highlighted.


Author(s):  
Yogita Patil-Sen

Nano0technology has received considerable attention and interest over the past few decades in the field of biomedicine due to the wide range of applications it provides in disease diagnosis, drug design and delivery, biomolecules detection, tissue engineering and regenerative medicine. Ultra-small size and large surface area of nanomaterials prove to be greatly advantageous for their biomedical applications. Moreover, the physico-chemical and thus, the biological properties of nanomaterials can be manipulated depending on the application. However, stability, efficacy and toxicity of nanoparticles remain challenge for researchers working in this area. This mini-review highlights the recent advances of various types of nanoparticles in biomedicine and will be of great value to researchers in the field of materials science, chemistry, biology and medicine.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Gaofeng Liang ◽  
Haojie Wang ◽  
Hao Shi ◽  
Haitao Wang ◽  
Mengxi Zhu ◽  
...  

Abstract Multifunctional lanthanide-based upconversion nanoparticles (UCNPs), which feature efficiently convert low-energy photons into high-energy photons, have attracted considerable attention in the domain of materials science and biomedical applications. Due to their unique photophysical properties, including light-emitting stability, excellent upconversion luminescence efficiency, low autofluorescence, and high detection sensitivity, and high penetration depth in samples, UCNPs have been widely applied in biomedical applications, such as biosensing, imaging and theranostics. In this review, we briefly introduced the major components of UCNPs and the luminescence mechanism. Then, we compared several common design synthesis strategies and presented their advantages and disadvantages. Several examples of the functionalization of UCNPs were given. Next, we detailed their biological applications in bioimaging and disease treatment, particularly drug delivery and photodynamic therapy, including antibacterial photodynamic therapy. Finally, the future practical applications in materials science and biomedical fields, as well as the remaining challenges to UCNPs application, were described. This review provides useful practical information and insights for the research on and application of UCNPs in the field of cancer.


Sign in / Sign up

Export Citation Format

Share Document