Fabrication of three-dimensional micro-structures: Microtransfer molding

1996 ◽  
Vol 8 (10) ◽  
pp. 837-840 ◽  
Author(s):  
Xiao-Mei Zhao ◽  
Younan Xia ◽  
George M. Whitesides
1994 ◽  
Vol 372 ◽  
Author(s):  
M. M. Farooqui ◽  
A. G. R. Evans

Fabrication of three dimensional micro structures in silicon and silicon related materials is becoming increasingly important for the realisation of micro systems comprising of sensors, actuators, transducers and analytical assemblies. Fabrication of such devices so far has been mostly in form of structures defined by the crystal planes of silicon, or has involved sophisticated technologies such as ion beam machining, replication using LIGA, or micromachining techniques involving a sequence of alignment and etch stages using binary masks. Structures with circular symmetry are of great interest as micro optical components amongst others, and these are not easily amenable to microfabrication techniques commonly employed.


2013 ◽  
Vol 05 (01) ◽  
pp. 1350002 ◽  
Author(s):  
I. Benedetti ◽  
F. Barbe

A survey of recent contributions on three-dimensional grain-scale mechanical modelling of polycrystalline materials is given in this work. The analysis of material micro-structures requires the generation of reliable micro-morphologies and affordable computational meshes as well as the description of the mechanical behavior of the elementary constituents and their interactions. The polycrystalline microstructure is characterized by the topology, morphology and crystallographic orientations of the individual grains and by the grain interfaces and microstructural defects, within the bulk grains and at the inter-granular interfaces. Their analysis has been until recently restricted to two-dimensional cases, due to high computational requirements. In the last decade, however, the wider affordability of increased computational capability has promoted the development of fully three-dimensional models. In this work, different aspects involved in the grain-scale analysis of polycrystalline materials are considered. Different techniques for generating artificial micro-structures, ranging from highly idealized to experimentally based high-fidelity representations, are briefly reviewed. Structured and unstructured meshes are discussed. The main strategies for constitutive modelling of individual bulk grains and inter-granular interfaces are introduced. Some attention has also been devoted to three-dimensional multiscale approaches and some established and emerging applications have been discussed.


1998 ◽  
Vol 120 (2) ◽  
pp. 353-357 ◽  
Author(s):  
Dae-Eun Kim ◽  
Jae-Joon Yi

In this paper a novel and economical method of generating three-dimensional micro-patterns on single crystal silicon without the need for a mask is presented. The technique is based on the fundamental understanding of frictional interaction at light loads. Micro-patterning is done through a two-step process that comprises mechanical scribing and chemical etching. The basic idea is to induce micro-plastic deformation along a prescribed track through frictional interaction between the tool and the workpiece. Then, by exposing the surface to a chemical under controlled conditions, preferential chemical reaction is induced along the track to form hillocks about 5 μm wide and 1 μm high. This method of micro-machining may be used for making patterns in micro-electro-mechanical systems (MEMS) at low cost. Furthermore, this process demonstrates how microtribological processes can be utilized in the fabrication of micro-structures.


2013 ◽  
Vol 652-654 ◽  
pp. 2123-2128
Author(s):  
Jing Ming Fan ◽  
Jun Wang

Abrasive jet machining is an efficient technology for the fabrication of three dimensional micro structures on brittle materials. In abrasive jet machining, the variation or fluctuation in the amount of abrasive supply has a significant effect on the quality of the machined structures. An image processing technique is employed in this study to study the abrasive flow rate variation, in which abrasive jet pictures are captured at different moments by a Particle Image Velocimetry technology and then processed using Labview Vision Assistant and MATLAB. It shows that the abrasive flow rate fluctuates with time under the jetting conditions considered. The abrasive flow from larger nozzles or at smaller air pressures shows more profound fluctuation. Although the abrasive flow fluctuation from smaller nozzles remains almost constant when the air pressure is changed, for larger nozzles, the magnitude of the fluctuation gradually decreases as the air pressure is increased.


2007 ◽  
Vol 17 (9) ◽  
pp. 1818-1827 ◽  
Author(s):  
Hiroaki Onoe ◽  
Eiji Iwase ◽  
Kiyoshi Matsumoto ◽  
Isao Shimoyama

Micromachines ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 615 ◽  
Author(s):  
Chow-Shing Shin ◽  
Tzu-Jui Li ◽  
Chih-Lang Lin

Two-photon polymerization enables the extremely high resolution three-dimensional printing of micro-structures. To know the mechanical properties, and better still, to be able to adjust them is of paramount importance to ensuring the proper structural integrity of the printed products. In this work, the Young’s modulus is measured on two-photon polymerized micro-cantilever bars. Optimizing the scanning trajectory of the laser focus points is important in alleviating distortion of the printed bars. By increasing the laser power and decreasing the inter-voxel distances we can double the Young’s modulus. Post-curing with ultraviolet light can approximately quadruple the Young’s modulus. However, the resulting modulus is still only about 0.3% of that of the bulk polymerized material.


2013 ◽  
Vol 762 ◽  
pp. 763-768
Author(s):  
Zhi Qing Hu ◽  
Ji Zhao ◽  
Zeng Ming Feng

Micro-structured surfaces with drag reduction, desorption, and excellent optical performance are widely used in the field of automotive, aerospace, marine applications. Therefore, the manufacturing of the micro-structure on the metal surface is of high impotance. Although the processing methods for micro-patterning of surfaces have progressed in recent years, micro-structure processing is still not used on large metal surfaces. In this paper, a method of roll forming micro-structure on the plate surface is proposed. A simulation model for micro-structure roll forming (MRF) was presented by using three-dimensional finite element method (FEM). The strain and stress, and the displacements caused by micro-structure were analyzed. The results provide theoretical guidance for the design of different micro-structures and the sequence of their processing.


Sign in / Sign up

Export Citation Format

Share Document