scholarly journals Large‐Size Monolayer MoSe 2 Single Crystals: Ultrafast Growth of Large‐Area Uniform, Millimeter‐Size MoSe 2 Single Crystals on Low‐Cost Soda‐Lime Glass (Adv. Mater. Interfaces 12/2021)

2021 ◽  
Vol 8 (12) ◽  
pp. 2170069
Author(s):  
Zhaoqian Zhang ◽  
Lijie Zhu ◽  
Dan Wang ◽  
Bin Tang ◽  
Pengfei Yang ◽  
...  
2021 ◽  
pp. 2100415
Author(s):  
Zhaoqian Zhang ◽  
Lijie Zhu ◽  
Dan Wang ◽  
Bin Tang ◽  
Pengfei Yang ◽  
...  

1996 ◽  
Vol 426 ◽  
Author(s):  
V. Probst ◽  
F. Karg ◽  
J. Rimmasch ◽  
W. Riedl ◽  
W. Stetter ◽  
...  

AbstractTargeting large area and low cost processing of highly efficient thin film solar modules an advanced stacked elemental layer process for Cu(InGa)Se2 (CIGS) thin films is presented. Key process steps are i) barrier coating of the soda lime glass substrate combined with the addition of a sodium compound to the elemental Cu/In/Ga/Se-precursor stack and ii) rapid thermal processing (RTP) to form the CIGS compound.By this strategy exact impurity control is achieved and the advantageous influence of sodium on device performance and on CIGS film formation is demonstrated unambiguously by means of electrical characterisation, XRD, SEM, TEM and SIMS. Sodium enriched and sodium free precursor stacks were heated to intermediate states (300°C–500°C) of the RTPreaction process. The experiment clearly reveals that on the reaction pathway to the chalcopyrite semiconductor increased amounts of copper-selenide are formed, if sodium is added to the precursor films. TEM-electron diffraction unambiguously identifies the CuSe-phase which is localised at the surface of the forming CIGS-film. These experimental findings propose a sodium assisted quasi liquid growth model for the CIS formation taking into account that sodium promotes the existence of CuSe at higher temperatures and its effect as a flux agent. The model contributes to a better understanding of the observed superior crystal qualitiy for sodium enriched in contrast to sodium free CIGS films.Application of these experimental findings in the technique of the optimized and controlled sodium incorporation significantly improves process reproducibility, CIGS film homogenity over larger substrate areas and shifts the average efficiency of cells and modules to a significantly higher level. This is demonstrated by a 12-cell integrated series connected minimodule with an aperture area of 51 cm2 and a confirmed efficiency of 11.75 %.


2014 ◽  
Vol 1670 ◽  
Author(s):  
Antony Jan ◽  
Yesheng Yee ◽  
Bruce M. Clemens

ABSTRACTThin-film absorber layers for photovoltaics have attracted much attention for their potential for low cost per unit power generation, due both to reduced material consumption and to higher tolerance for defects such as grain boundaries. Cu2ZnGeSe4 (CZGSe) comprises one such material system which has a near-optimal direct band gap of 1.6 eV for absorption of the solar spectrum, and is made primarily from earth-abundant elements.CZGSe metallic precursor films were sputtered from Cu, Zn, and Ge onto Mo-coated soda lime glass substrates. These were then selenized in a two-zone close-space sublimation furnace using elemental Se as the source, with temperatures in the range of 400 to 500 C, and at a variety of background pressures. Films approximately 1-1.5 µm thick were obtained with the expected stannite crystal structure.Next, Cu2ZnSnSe4 (CZTSe), which has a direct band gap of 1.0 eV, was prepared in a similar manner and combined with CZGSe as either compositionally homogeneous or layered absorbers. The compositional uniformity of selenide absorbers made by selenizing compositionally homogeneous Cu-Zn-Ge-Sn precursor layers was determined and the band gap as a function of composition was investigated in order to demonstrate that the band gap is tuneable for a range of compositions. For layered Cu-Zn-Ge/Cu-Zn-Sn precursor films, the composition profile was measured before and after selenization to assess the stability of the layered structure, and its applicability for forming a band-gap-graded device for improved current collection.


2014 ◽  
Vol 1004-1005 ◽  
pp. 774-777 ◽  
Author(s):  
Ji Wan Liu ◽  
Gui Lin Chen ◽  
Wei Feng Liu ◽  
Guo Shun Jiang ◽  
Chang Fei Zhu

A low-cost non-vacuum process for fabrication of Cu2SnSe3 film by sol-gel method and knife-coating process is described. First, a certain amount of Copper (I) chloride and tin (IV) tetrachloride was dissolve into the mixture of water and alcohol and then some Polyvinyl Pyrrolidone (PVP) was added to the solution to obtain based colloidal solution. Next, precursor thin layer was deposited by knife-blading technique on soda-lime glass (SLG). Finally, precursor layer was annealed at selenium flow atmosphere carried by Ar gas at 550oC. Through X-ray diffraction (XRD) and Raman spectra, it is found that pure Cu2SnSe3 film was prepared successfully. Scanning electron microscopy (SEM) and UV–vis–NIR absorbance spectroscopy were used to characterize its morphology and optical bandgap.


2015 ◽  
Vol 1109 ◽  
pp. 461-465 ◽  
Author(s):  
Nurbaya Zainal ◽  
Mohd Hafiz Wahid ◽  
Mohammad Rusop

Performance of lead titanate, (PbTiO3) thin films have been successfully investigated on microstructural properties, I-V characteristic, dielectric properties, and ferroelectric properties. PbTiO3offers variety of application as transducer, ferroelectric random access memory, transistor, high performance capacitor, sensor, and many more due to its ferroelectric behavior. Preparation of the films are often discussed in order to improve the structural properties, like existence of grain boundaries, particle uniformity, presents of microcrack films, porosities, and many more. Yet, researchers still prepare PbTiO3thin films at high crystallization temperature, certainly above than 600 ̊C to obtain single crystal perovskite structure that would be the reason to gain high spontaneous polarization behavior. Although this will results to high dielectric constant value, the chances that leads to high leakage current is a major failure in device performance. Thus, preparation the thin films at low annealing temperature quite an essential study which is more preferable deposited on low-cost soda lime glass. The study focuses on low annealing temperature of PbTiO3thin films through sol-gel spin coating method and undergo for dielectric and I-V measurements.


2002 ◽  
Vol 16 (06n07) ◽  
pp. 979-982 ◽  
Author(s):  
JAEMYUNG KIM ◽  
KWANGSOO NO

We have grown carbon nanotubes (CNTs) on the soda-lime glass substrates using chemical vapor deposition of C 2 H 2 gas at 550°C. We used electro-plated Ni thin film as a catalyst and screen-printed Ag thick film as a cathode. The turn-on field was about 2.55 V /μ m with an emission current density of 10 μ A / cm 2, and electric field was about 4.0 V /μ m with an emission current density of 3 mA/cm2. Fowler-Nordheim plot shows good linear fit, indicating that the emission current of CNTs follows the Fowler-Nordheim behavior. This process is suitable for mass production of CNT field emission display(CNT-FED), because of its merits; low temperature (≤ 550° C ) process, easiness of CNT patterning, non-vacuum process, large area uniformity.


1980 ◽  
Vol 7 (1-3) ◽  
pp. 55-62 ◽  
Author(s):  
S. J. Stein ◽  
C. Huang ◽  
A. S. Gelb

Porcelain enameled steels have had a long history of industrial, structural and related applications. Recent interest in such materials has centered on electrical uses as a substrate for hybrid circuits, additive printed wiring, and packaging. A study of some of the critical properties of available enameled steels was undertaken.Five types of enameled steel substrates from three manufacturers were tested. The electrical properties studied included dielectric constant, dissipation factor, voltage breakdown, surface and bulk insulation resistance. The effect of humidity on the insulation resistance of the enamel coatings themselves was compared. The influence of the thermal conductivity of the substrates was also examined.The properties of a thick film resistor system was determined on the various enamel steel substrates. The properties tested included resistivity and TCR firing sensitivity.The effect of the type of substrate on the properties of a selection of thick film conductors was determined. Conductivity and gold and aluminum wire bond strength were compared on the various substrates.The dielectric properties of a multilayer/crossover dielectric thick film material were compared among 96% alumina, soda-lime glass and the various enameled steel substrates.Many individual differences between the enameled steel substrates were found. However, all of the substrates could be utilized to produce satisfactory thick film circuits when the proper choice of thick film materials was made.Continuing changes, improvements and additional sources of supply are expected to overcome some of the present shortcomings. These should enhance the use of such substrates for large area uses and lower cost applications.


2004 ◽  
Vol 79 (4-6) ◽  
pp. 859-864 ◽  
Author(s):  
J.T. Dickinson ◽  
S. Orlando ◽  
S.M. Avanesyan ◽  
S.C. Langford

2008 ◽  
Vol 128 (2) ◽  
pp. 552-559 ◽  
Author(s):  
R. Mazurczyk ◽  
G. El Khoury ◽  
V. Dugas ◽  
B. Hannes ◽  
E. Laurenceau ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document