scholarly journals Miniaturized Self‐Resonant Micro Coil Array with A Floating Structure for Wireless Multi‐Channel Transmission

2021 ◽  
pp. 2102944
Author(s):  
Byoung Ok Jun ◽  
Han‐Joon Kim ◽  
Su Jin Heo ◽  
Jonghyeun Kim ◽  
Jae Hoon Yang ◽  
...  
Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1110
Author(s):  
Wei-Qin Liu ◽  
Luo-Nan Xiong ◽  
Guo-Wei Zhang ◽  
Meng Yang ◽  
Wei-Guo Wu ◽  
...  

The numerical hydroelastic method is used to study the structural response of a hexagon enclosed platform (HEP) of flexible module rigid connector (FMRC) structure that can provide life accommodation, ship berthing and marine supply for ships sailing in the deep ocean. Six trapezoidal floating structures constitute the HEP structure so that it is a symmetrical very large floating structure (VLFS). The HEP has the characteristics of large area and small depth, so its hydroelastic response is significant. Therefore, this paper studies the structural responses of a hexagon enclosed platform of FMRC structure in waves by means of a 3D potential-flow hydroelastic method based on modal superposition. Numerical models, including the hydrodynamic model, wet surface model and finite element method (FEM) model, are established, a rigid connection is simulated by many-point-contraction (MPC) and the number of wave cases is determined. The load and structural response of HEP are obtained and analyzed in all wave cases, and frequency-domain hydroelastic calculation and time-domain hydroelastic calculation are carried out. After obtaining a number of response amplitude operators (RAOs) for stress and time-domain stress histories, the mechanism of the HEP structure is compared and analyzed. This study is used to guide engineering design for enclosed-type ocean platforms.


Author(s):  
Daniele Dessi ◽  
Sara Siniscalchi Minna

A combined numerical/theoretical investigation of a moored floating structure response to incoming waves is presented. The floating structure consists of three bodies, equipped with fenders, joined by elastic cables. The system is also moored to the seabed with eight mooring lines. This corresponds to an actual configuration of a floating structure used as a multipurpose platform for hosting wind-turbines, aquaculture farms or wave-energy converters. The dynamic wave response is investigated with numerical simulations in regular and irregular waves, showing a good agreement with experiments in terms of time histories of pitch, heave and surge motions as well as of the mooring line forces. To highlight the dynamical behavior of this complex configuration, the proper orthogonal decomposition is used for extracting the principal modes by which the moored structure oscillates in waves giving further insights about the way waves excites the structure.


2013 ◽  
Vol 49 (13) ◽  
pp. 815-816
Author(s):  
A.L. Perrier ◽  
D. Grenier ◽  
N. Ravel ◽  
P. Litaudon ◽  
O. Beuf
Keyword(s):  

Author(s):  
Will Brindley ◽  
Andrew P. Comley

In recent years a number of high profile mooring failures have emphasised the high risk nature of this element of a floating structure. Semi-submersible Mobile Offshore Drilling Units (MODUs) operating in the harsh North Sea environment have experienced approximately 3 mooring failures every 2 years, based on an average population of 34 units. In recognition of the high mooring failure rates, the HSE has introduced recommendations for more stringent mooring strength requirements for units operating on the UK Continental Shelf (UKCS) [17]. Although strength requirements are useful to assess the suitability of a mooring design, they do not provide an insight into the question: what is the reliability of the mooring system? This paper aims to answer this question by evaluating failure statistics over the most recent decade of available data. Mooring failure rates are compared between the Norwegian Continental Shelf (NCS), the UKCS, and with industry code targets to understand how overall reliability is related to the strength capacity of a mooring system. The failure statistics suggest that a typical MODU operating in the UKCS would experience a mooring line failure in heavy weather approximately every 20 operating years. This failure rate appears to be several orders of magnitude greater than industry targets used to calibrate mooring codes. Despite the increased strength requirements for the NCS, failure rates do not appear to be lower than the UKCS. This suggests that reliability does not correlate well with mooring system strength. As a result, designing to meet the more rigorous HSE requirements, which would require extensive upgrades to existing units, may not significantly increase mooring system reliability. This conclusion needs to be supported with further investigation of failure statistics in both the UKCS and NCS. In general, work remains to find practical ways to further understand past failures and so improve overall reliability.


2011 ◽  
Vol 317-319 ◽  
pp. 1153-1162
Author(s):  
Jium Ming Lin ◽  
Po Kuang Chang ◽  
Cheng Hung Lin ◽  
Qi Kun Zhang

This research proposes a wireless RFID-based thermal bubble accelerometer design, and relates more particularly for the technology to manufacture and package it on a flexible substrate. The key technology is to integrate both a thermal bubble accelerometer and a wireless RFID antenna on the same substrate, such that the accelerometer is very convenient for fabrication and usage. In this paper the heaters as well as the thermal sensors are directly adhering on the surface of the flexible substrate without the traditional floating structure. Thus the structure is much simpler and cheaper for manufacturing, and much more reliable in large acceleration impact condition without broken. Furthermore, the molecular weight of xenon gas is much larger than carbon dioxide, thus the performance of the accelerometer will be increased. In addition, the shape of the chamber is changed as a semi-cylindrical one instead of the conventional rectangular type. Comparisons of sensitivity and response time are also made; one can see the performances of the proposed new design with either semi-cylindrical chamber or filled with xenon gas are better.


Sign in / Sign up

Export Citation Format

Share Document