MHz-Range Fully Printed High-Performance Thin-Film Transistors by Using High-Resolution Gravure-Printed Lines

2015 ◽  
Vol 1 (12) ◽  
pp. 1500155 ◽  
Author(s):  
Rungrot Kitsomboonloha ◽  
Hongki Kang ◽  
Gerd Grau ◽  
William Scheideler ◽  
Vivek Subramanian
2020 ◽  
Vol 4 (10) ◽  
pp. 2990-2994
Author(s):  
Deyang Ji ◽  
Jie Li ◽  
Xiaosong Chen ◽  
Lin Li ◽  
Liqiang Li ◽  
...  

Polystyrene-based masks are fabricated to produce top-contact high-resolution (5 μm) electrodes. With this mask, the mobility of DPA-based thin-film transistors could reach 19.22 cm2 V−1 s−1, which is a new breakthrough for DPA thin-film transistors.


Author(s):  
K. Ogura ◽  
H. Nishioka ◽  
N. Ikeo ◽  
T. Kanazawa ◽  
J. Teshima

Structural appraisal of thin film magnetic media is very important because their magnetic characters such as magnetic hysteresis and recording behaviors are drastically altered by the grain structure of the film. However, in general, the surface of thin film magnetic media of magnetic recording disk which is process completed is protected by several-nm thick sputtered carbon. Therefore, high-resolution observation of a cross-sectional plane of a disk is strongly required to see the fine structure of the thin film magnetic media. Additionally, observation of the top protection film is also very important in this field.Recently, several different process-completed magnetic disks were examined with a UHR-SEM, the JEOL JSM 890, which consisted of a field emission gun and a high-performance immerse lens. The disks were cut into approximately 10-mm squares, the bottom of these pieces were carved into more than half of the total thickness of the disks, and they were bent. There were many cracks on the bent disks. When these disks were observed with the UHR-SEM, it was very difficult to observe the fine structure of thin film magnetic media which appeared on the cracks, because of a very heavy contamination on the observing area.


2010 ◽  
Vol 130 (2) ◽  
pp. 161-166
Author(s):  
Yoshinori Ishikawa ◽  
Yasuo Wada ◽  
Toru Toyabe ◽  
Ken Tsutsui

Author(s):  
Stephen R. Forrest

Organic electronics is a platform for very low cost and high performance optoelectronic and electronic devices that cover large areas, are lightweight, and can be both flexible and conformable to irregularly shaped surfaces such as foldable smart phones. Organics are at the core of the global organic light emitting device (OLED) display industry, and also having use in efficient lighting sources, solar cells, and thin film transistors useful in medical and a range of other sensing, memory and logic applications. This book introduces the theoretical foundations and practical realization of devices in organic electronics. It is a product of both one and two semester courses that have been taught over a period of more than two decades. The target audiences are students at all levels of graduate studies, highly motivated senior undergraduates, and practicing engineers and scientists. The book is divided into two sections. Part I, Foundations, lays down the fundamental principles of the field of organic electronics. It is assumed that the reader has an elementary knowledge of quantum mechanics, and electricity and magnetism. Background knowledge of organic chemistry is not required. Part II, Applications, focuses on organic electronic devices. It begins with a discussion of organic thin film deposition and patterning, followed by chapters on organic light emitters, detectors, and thin film transistors. The last chapter describes several devices and phenomena that are not covered in the previous chapters, since they lie outside of the current mainstream of the field, but are nevertheless important.


2008 ◽  
Vol 18 (39) ◽  
pp. 4698 ◽  
Author(s):  
Myoung-Chul Um ◽  
Jeonghun Kwak ◽  
Jung-Pyo Hong ◽  
Jihoon Kang ◽  
Do Yeung Yoon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document