Technical note: Mapping of trabecular bone anisotropy and volume fraction in 3D using μCT images of the human calcaneus

Author(s):  
Natalie Reznikov ◽  
Huilin Liang ◽  
Marc D. McKee ◽  
Nicolas Piché
2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Jingyan Fu ◽  
Matthew Goldsmith ◽  
Sequoia D. Crooks ◽  
Sean F. Condon ◽  
Martin Morris ◽  
...  

AbstractAnimals in space exploration studies serve both as a model for human physiology and as a means to understand the physiological effects of microgravity. To quantify the microgravity-induced changes to bone health in animals, we systematically searched Medline, Embase, Web of Science, BIOSIS, and NASA Technical reports. We selected 40 papers focusing on the bone health of 95 rats, 61 mice, and 9 rhesus monkeys from 22 space missions. The percentage difference from ground control in rodents was –24.1% [Confidence interval: −43.4, −4.9] for trabecular bone volume fraction and –5.9% [−8.0, −3.8] for the cortical area. In primates, trabecular bone volume fraction was lower by –25.2% [−35.6, −14.7] in spaceflight animals compared to GC. Bone formation indices in rodent trabecular and cortical bone were significantly lower in microgravity. In contrast, osteoclast numbers were not affected in rats and were variably affected in mice. Thus, microgravity induces bone deficits in rodents and primates likely through the suppression of bone formation.


2013 ◽  
Vol 135 (12) ◽  
Author(s):  
Arnav Sanyal ◽  
Tony M. Keaveny

The biaxial failure behavior of the human trabecular bone, which has potential relevance both for fall and gait loading conditions, is not well understood, particularly for low-density bone, which can display considerable mechanical anisotropy. Addressing this issue, we investigated the biaxial normal strength behavior and the underlying failure mechanisms for human trabecular bone displaying a wide range of bone volume fraction (0.06–0.34) and elastic anisotropy. Micro-computed tomography (CT)-based nonlinear finite element analysis was used to simulate biaxial failure in 15 specimens (5 mm cubes), spanning the complete biaxial normal stress failure space in the axial-transverse plane. The specimens, treated as approximately transversely isotropic, were loaded in the principal material orientation. We found that the biaxial stress yield surface was well characterized by the superposition of two ellipses—one each for yield failure in the longitudinal and transverse loading directions—and the size, shape, and orientation of which depended on bone volume fraction and elastic anisotropy. However, when normalized by the uniaxial tensile and compressive strengths in the longitudinal and transverse directions, all of which depended on bone volume fraction, microarchitecture, and mechanical anisotropy, the resulting normalized biaxial strength behavior was well described by a single pair of (longitudinal and transverse) ellipses, with little interspecimen variation. Taken together, these results indicate that the role of bone volume fraction, microarchitecture, and mechanical anisotropy is mostly accounted for in determining the uniaxial strength behavior and the effect of these parameters on the axial-transverse biaxial normal strength behavior per se is minor.


2006 ◽  
Vol 321-323 ◽  
pp. 1070-1073
Author(s):  
Ye Yeon Won ◽  
Myong Hyun Baek ◽  
Wen Quan Cui ◽  
Kwang Kyun Kim

This study investigates micro-structural and mechanical properties of trabecular bone in human femoral head with and without osteoporosis using a micro-CT and a finite element model. 15 cored trabecular bone specimens with 20 of diameter were obtained from femoral heads with osteoporosis resected for total hip arthroplasty, and 5 specimens were removed from femoral head of cadavers, which has no history of musculoskeletal diseases. A high-resolution micro-CT system was used to scan each specimen to obtain histomorphometry indexes. Based on the micro-images, a FE-model was created to determine mechanical property indexes. While the non-osteoporosis group had increases the trabecular thickness, the bone volume, the bone volume fraction, the degree of anisotropy and the trabecular number compared with those of osteoporotic group, the non-osteoporotic group showed decreases in trabecular separation and structure model index. Regarding the mechanical property indexes, the reaction force and the Young's modulus were lower in the osteoporotic group than in non-osteoporotic group. Our data shows salient deteriorations in trabecular micro-structural and mechanical properties in human femoral head with osteoporosis.


2019 ◽  
Vol 141 (3) ◽  
Author(s):  
Vivek Palepu ◽  
Melvin D. Helgeson ◽  
Michael Molyneaux-Francis ◽  
Srinidhi Nagaraja

Several approaches (anterior, posterior, lateral, and transforaminal) are used in lumbar fusion surgery. However, it is unclear whether one of these approaches has the greatest subsidence risk as published clinical rates of cage subsidence vary widely (7–70%). Specifically, there is limited data on how a patient's endplate morphometry and trabecular bone quality influences cage subsidence risk. Therefore, this study compared subsidence (stiffness, maximum force, and work) between anterior (ALIF), lateral (LLIF), posterior (PLIF), and transforaminal (TLIF) lumbar interbody fusion cage designs to understand the impact of endplate and trabecular bone quality on subsidence. Forty-eight lumbar vertebrae were imaged with micro-ct to assess trabecular microarchitecture. micro-ct images of each vertebra were then imported into image processing software to measure endplate thickness (ET) and maximum endplate concavity depth (ECD). Generic ALIF, LLIF, PLIF, and TLIF cages made of polyether ether ketone were implanted on the superior endplates of all vertebrae and subsidence testing was performed. The results indicated that TLIF cages had significantly lower (p < 0.01) subsidence stiffness and maximum subsidence force compared to ALIF and LLIF cages. For all cage groups, trabecular bone volume fraction was better correlated with maximum subsidence force compared to ET and concavity depth. These findings highlight the importance of cage design (e.g., surface area), placement on the endplate, and trabecular bone quality on subsidence. These results may help surgeons during cage selection for lumbar fusion procedures to mitigate adverse events such as cage subsidence.


2005 ◽  
Vol 874 ◽  
Author(s):  
Richard Weinkamer ◽  
Markus A. Hartmann ◽  
Yves Brechet ◽  
Peter Fratzl

AbstractUsing a stochastic lattice model we have studied the architectural changes of trabecular bone occurring while the structure is remodeled. Our model considers the mechanical feedback loop, which control the remodeling process. A fast algorithm was employed to solve approximately the mechanical problem. A general feature of the model is that a networklike structure emerges, which further coarsens while the bone volume fraction remains unchanged. Decreasing the mechanical response of the system by either lowering the external load or the internal mechano-sensitivity leads not only to a reduction of the bone volume fraction, but results in topological changes of the trabecular bone architecture, where the loss of horizontal trabeculae is the most obvious effect.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5156 ◽  
Author(s):  
Leoni Georgiou ◽  
Tracy L. Kivell ◽  
Dieter H. Pahr ◽  
Matthew M. Skinner

BackgroundIn addition to external bone shape and cortical bone thickness and distribution, the distribution and orientation of internal trabecular bone across individuals and species has yielded important functional information on how bone adapts in response to load. In particular, trabecular bone analysis has played a key role in studies of human and nonhuman primate locomotion and has shown that species with different locomotor repertoires display distinct trabecular architecture in various regions of the skeleton. In this study, we analyse trabecular structure throughout the distal femur of extant hominoids and test for differences due to locomotor loading regime.MethodsMicro-computed tomography scans ofHomo sapiens(n= 11),Pan troglodytes(n= 18),Gorilla gorilla(n= 14) andPongosp. (n= 7) were used to investigate trabecular structure throughout the distal epiphysis of the femur. We predicted that bone volume fraction (BV/TV) in the medial and lateral condyles inHomowould be distally concentrated and more anisotropic due to a habitual extended knee posture at the point of peak ground reaction force during bipedal locomotion, whereas great apes would show more posteriorly concentrated BV/TV and greater isotropy due to a flexed knee posture and more variable hindlimb use during locomotion.ResultsResults indicate some significant differences between taxa, with the most prominent being higher BV/TV in the posterosuperior region of the condyles inPanand higher BV/TV and anisotropy in the posteroinferior region inHomo. Furthermore, trabecular number, spacing and thickness differ significantly, mainly separatingGorillafrom the other apes.DiscussionThe trabecular architecture of the distal femur holds a functional signal linked to habitual behaviour; however, there was more similarity across taxa and greater intraspecific variability than expected. Specifically, there was a large degree of overlap in trabecular structure across the sample, andHomowas not as distinct as predicted. Nonetheless, this study offers a comparative sample of trabecular structure in the hominoid distal femur and can contribute to future studies of locomotion in extinct taxa.


2021 ◽  
Vol 8 (6) ◽  
pp. 201401
Author(s):  
A. A. Felder ◽  
S. Monzem ◽  
R. De Souza ◽  
B. Javaheri ◽  
D. Mills ◽  
...  

Changes in trabecular micro-architecture are key to our understanding of osteoporosis. Previous work focusing on structure model index (SMI) measurements have concluded that disease progression entails a shift from plates to rods in trabecular bone, but SMI is heavily biased by bone volume fraction. As an alternative to SMI, we proposed the ellipsoid factor (EF) as a continuous measure of local trabecular shape between plate-like and rod-like extremes. We investigated the relationship between EF distributions, SMI and bone volume fraction of the trabecular geometry in a murine model of disuse osteoporosis as well as from human vertebrae of differing bone volume fraction. We observed a moderate shift in EF median (at later disease stages in mouse tibia) and EF mode (in the vertebral samples with low bone volume fraction) towards a more rod-like geometry, but not in EF maximum and minimum. These results support the notion that the plate to rod transition does not coincide with the onset of bone loss and is considerably more moderate, when it does occur, than SMI suggests. A variety of local shapes not straightforward to categorize as rod or plate exist in all our trabecular bone samples.


2015 ◽  
Vol 22 (3) ◽  
pp. 273-282 ◽  
Author(s):  
Srinidhi Nagaraja ◽  
Hassan K. Awada ◽  
Maureen L. Dreher ◽  
John T. Bouck ◽  
Shikha Gupta

OBJECT The aim in this study was to quantify the effects of vertebroplasty on endplate subsidence in treated and adjacent vertebrae and their relationship to endplate thickness and underlying trabecular bone in elderly female spines. METHODS Vertebral compression fractures were created in female cadaveric (age range 51–88 years) thoracolumbar spine segments. Specimens were placed into either the control or vertebroplasty group (n = 9/group) such that bone mineral density, trabecular microarchitecture, and age were statistically similar between groups. For the vertebroplasty group, polymethylmethacrylate bone cement was injected into the fractured vertebral body under fluoroscopy. Cyclic compression (685–1370 N sinusoid) was performed on all spine segments for 115,000 cycles. Micro-CT scans were obtained before and after cyclic loading to quantify endplate subsidence. Maximum subsidence was compared between groups in the caudal endplate of the superior adjacent vertebra (SVcau); cranial (TVcra) and caudal (TVcau) endplates of the treated vertebra; and the cranial endplate of the inferior adjacent vertebra (IVcra). In addition, micro-CT images were used to quantify average endplate thickness and trabecular bone volume fraction. These parameters were then correlated with maximum endplate subsidence for each endplate. RESULTS The maximum subsidence in SVcau endplate for the vertebroplasty group (0.34 ± 0.58 mm) was significantly (p < 0.05) greater than for the control group (−0.13 ± 0.27 mm). Maximum subsidence in the TVcra, TVcau, and IVcra endplates were greater in the vertebroplasty group, but these differences were not significant (p > 0.16). Increased subsidence in the vertebroplasty group manifested locally in the anterior region of the SVcau endplate and in the posterior region of the TVcra and TVcau endplates (p < 0.10). Increased subsidence was observed in thinner endplates with lower trabecular bone volume fraction for both vertebroplasty and control groups (R2 correlation up to 62%). In the SVcau endplate specifically, these 2 covariates aided in understanding subsidence differences between vertebroplasty and control groups. CONCLUSIONS Bone cement injected during vertebroplasty alters local biomechanics in elderly female spines, resulting in increased endplate disruption in treated and superior adjacent vertebrae. More specifically, bone cement increases subsidence in the posterior regions of the treated endplates and the anterior region of the superior caudal endplate. This increased subsidence may be the initial mechanism leading to subsequent compression fractures after vertebroplasty, particularly in vertebrae superior to the treated level.


Sign in / Sign up

Export Citation Format

Share Document