scholarly journals Using machine learning to predict engineering technology students’ success with computer‐aided design

Author(s):  
Jasmine Singh ◽  
Viranga Perera ◽  
Alejandra J. Magana ◽  
Brittany Newell ◽  
Jin Wei‐Kocsis ◽  
...  
Author(s):  
Aditya Balu ◽  
Sambit Ghadai ◽  
Soumik Sarkar ◽  
Adarsh Krishnamurthy

Abstract Computer-aided Design for Manufacturing (DFM) systems play an essential role in reducing the time taken for product development by providing manufacturability feedback to the designer before the manufacturing phase. Traditionally, DFM rules are hand-crafted and used to accelerate the engineering product design process by integrating manufacturability analysis during design. Recently, the feasibility of using a machine learning-based DFM tool in intelligently applying the DFM rules have been studied. These tools use a voxelized representation of the design and then use a 3D-Convolutional Neural Network (3D-CNN), to provide manufacturability feedback. Although these frameworks work effectively, there are some limitations to the voxelized representation of the design. In this paper, we introduce a new representation of the computer-aided design (CAD) model using orthogonal distance fields (ODF). We provide a GPU-accelerated algorithm to convert standard boundary representation (B-rep) CAD models into ODF representation. Using the ODF representation, we build a machine learning framework, similar to earlier approaches, to create a machine learning-based DFM system to provide manufacturability feedback. As proof of concept, we apply this framework to assess the manufacturability of drilled holes. The framework has an accuracy of more than 84% correctly classifying the manufacturable and non-manufacturable models using the new representation.


Sign in / Sign up

Export Citation Format

Share Document