Effect of Compounds from Moringa oleifera Lam. on in Vitro Non‐Alcoholic Fatty Liver Disease (NAFLD) Model System

Author(s):  
Motohiko Ukiya ◽  
Kazuki Motegi ◽  
Daisuke Sato ◽  
Hirokazu Kimura ◽  
Hideo Satsu ◽  
...  
Author(s):  
Lingling Guan ◽  
Lan Guo ◽  
Heng Zhang ◽  
Hao Liu ◽  
Yuan Qiao ◽  
...  

Abstract Background and Purpose: The autophagic degradation of lipid droplets (LDs), termed lipophagy, is the main mechanism contributing to lipid consumption in hepatocytes. The identification of effective and safe natural compounds that target lipophagy to eliminate excess lipids may be a potential therapeutic strategy for non-alcoholic fatty liver disease (NAFLD). Here, we investigated the effects of naringin on NAFLD and the underlying mechanism. Experimental Approach: The role of naringin was investigated in mice fed a high-fat diet (HFD) to induce NAFLD, as well as in AML12 cells and primary hepatocytes stimulated by palmitate (PA). Transcription factor EB (TFEB)-knockdown AML12 cells and hepatocyte-specific TFEB-knockout mice were also used for the mechanism study. In vivo and in vitro studies were conducted using transmission electron microscopy, immunofluorescence techniques and western blot analysis. Key Results: We found that naringin treatment effectively relieved HFD-induced hepatic steatosis in mice and inhibited palmitate (PA)-induced lipid accumulation in hepatocytes. The increased p62 and LC3-II levels observed with excess lipid-support autophagosome accumulation and impaired autophagic flux. Treatment with naringin restored TFEB-mediated lysosomal biogenesis, thereby promoting the fusion of autophagosomes and lysosomes, restoring impaired autophagic flux and further inducing lipophagy. However, the knockdown of TFEB in hepatocytes or the hepatocyte-specific knockout of TFEB in mice abrogated naringin-induced lipophagy, which eliminated the therapeutic effect of naringin on hepatic steatosis. Conclusion and Implications: These results demonstrate that TFEB-mediated lysosomal biogenesis and subsequent lipophagy play essential roles in the ability of naringin to mitigate hepatic steatosis and suggest that naringin is a promising drug for treating or relieving NAFLD.


2020 ◽  
Author(s):  
Jiandong Yang ◽  
Yoshikazu Hirai ◽  
Kei Iida ◽  
Shinji Ito ◽  
Marika Trumm ◽  
...  

AbstractNon-alcoholic fatty liver disease (NAFLD) afflicts a large percentage of the population, but no effective treatments have been established so far because of the unsuitability of in vitro assays and experimental models using animals. By co-culturing human gut and liver cell lines interconnected via microfluidics for a closed circulation loop, we created a gut–liver-on-a-chip (iGLC) platform as an in vitro human model of the gut–liver axis (GLA) for the initiation and progression of NAFLD. Microscopic high-content analysis followed by mRNA sequencing showed that co-culturing the gut and liver cells significantly affected each cell type compared to culturing them separately. NAFLD-inducing free fatty acids (FFAs) accumulated in the gut cells and elevated gene expressions associated with retinol metabolism and glucuronidation. The FFA-treated liver cells accumulated intracellular lipid droplets and showed an increase in gene expressions associated with a cellular response to copper ions and endoplasmic reticulum stress. As an in vitro human GLA model, the iGLC platform may serve as an alternative to animal experiments for investigating NAFLD mechanisms.


2017 ◽  
Vol 23 (2) ◽  
pp. 204 ◽  
Author(s):  
Tomasz Kostrzewski ◽  
Terri Cornforth ◽  
Sophie A Snow ◽  
Larissa Ouro-Gnao ◽  
Cliff Rowe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document