ChemInform Abstract: FeCl3-Catalyzed Ring-Closing Carbonyl-Olefin Metathesis.

ChemInform ◽  
2016 ◽  
Vol 47 (52) ◽  
Author(s):  
Lina Ma ◽  
Wenjuan Li ◽  
Hui Xi ◽  
Xiaohui Bai ◽  
Enlu Ma ◽  
...  
Keyword(s):  
2018 ◽  
Author(s):  
Haley Albright ◽  
Paul S. Riehl ◽  
Christopher C. McAtee ◽  
Jolene P. Reid ◽  
Jacob R. Ludwig ◽  
...  

<div>Catalytic carbonyl-olefin metathesis reactions have recently been developed as a powerful tool for carbon-carbon bond</div><div>formation. However, currently available synthetic protocols rely exclusively on aryl ketone substrates while the corresponding aliphatic analogs remain elusive. We herein report the development of Lewis acid-catalyzed carbonyl-olefin ring-closing metathesis reactions for aliphatic ketones. Mechanistic investigations are consistent with a distinct mode of activation relying on the in situ formation of a homobimetallic singly-bridged iron(III)-dimer as the active catalytic species. These “superelectrophiles” function as more powerful Lewis acid catalysts that form upon association of individual iron(III)-monomers. While this mode of Lewis acid activation has previously been postulated to exist, it has not yet been applied in a catalytic setting. The insights presented are expected to enable further advancement in Lewis acid catalysis by building upon the activation principle of “superelectrophiles” and broaden the current scope of catalytic carbonyl-olefin metathesis reactions.</div>


2013 ◽  
Vol 17 (22) ◽  
pp. 2592-2608 ◽  
Author(s):  
Fatma Hamad ◽  
Cheng Kai ◽  
Yuan Cai ◽  
Yu Xie ◽  
Yin Lu ◽  
...  

2014 ◽  
Vol 4 (2) ◽  
pp. 216-230 ◽  
Author(s):  
Xin Li ◽  
Jing Guan ◽  
Gang Yang
Keyword(s):  

Synlett ◽  
2021 ◽  
Author(s):  
Quentin Michaudel ◽  
Samuel J. Kempel ◽  
Ting-Wei Hsu

AbstractOlefin metathesis has tremendously impacted all fields of synthetic chemistry. However, the control of the olefin stereochemistry during this process remains a grand challenge. Recent innovations in catalyst design have permitted control of the stereochemistry of the olefin product. Here, we discuss the development of stereoretentive olefin metathesis, with an emphasis on the synthesis of stereodefined polyalkenamers through ring-opening metathesis polymerization (ROMP). We then present our application of this unique reaction manifold to the preparation of all-cis poly(p-phenylene vinylene)s (PPVs). A dithiolate Ru catalyst was found to deliver perfect cis selectivity for the polymerization of a paracyclophane diene monomer. By using optimized conditions, all-cis PPVs with narrow dispersities and predictable molar masses were obtained by varying the ratio of monomer to catalyst. The high chain fidelity of the stereoretentive ROMP with a paracyclophane diene monomer enabled the preparation of well-defined diblock copolymers with a norbornene co-monomer. Photochemical isomerization of all-cis to all-trans PPVs was effected with both homopolymers and diblock copolymers. This process was shown to be selective for the PPV block, and resulted in changes in optical properties, polymer size, and solubility. Stereoretentive ROMP provides a promising platform for synthesizing polymers with unique properties, including photoresponsive all-cis PPVs with living characteristics.1 Introduction2 Synthetic Applications of Stereoretentive Olefin Metathesis3 Stereocontrol of Polyalkenamers through Stereoretentive ROMP4 Stereoretentive ROMP To Access All-cis Poly(p-phenylene vinylene)s5 Conclusion


2005 ◽  
Vol 83 (6-7) ◽  
pp. 748-754 ◽  
Author(s):  
Samantha D Drouin ◽  
Heather M Foucault ◽  
Glenn PA Yap ◽  
Deryn E Fogg

Reaction of the Grubbs catalyst RuCl2(PCy3)2(CHPh) (1) with lithium 2-[(2,6-diisopropylphenyl)imino]pyrrolide·Et2O (LiNN′·Et2O) gives alkylidene complex 5, containing a chelating, σ-bound iminopyrrolato unit. The structure of 5 is confirmed by X-ray crystallography. Treatment of 5 with pyridine generates RuCl(NN′)(py)2(CHPh) (6) via displacement of PCy3. Complex 5 effects ring-closing metathesis in air, displaying high reactivity relative to 6.Key words: ruthenium, alkylidene, metathesis, pyrrolimine, iminopyrrolato.


1978 ◽  
Vol 9 (5) ◽  
Author(s):  
W. AST ◽  
G. RHEINWALD ◽  
R. KERBER
Keyword(s):  

Author(s):  
Louis Monsigny ◽  
Jakub Piątkowski ◽  
Damian Trzybiński ◽  
Krzysztof Wozniak ◽  
Tomasz Nienałtowski ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document