scholarly journals The Influence of Rheological and Wetting Properties of Hydrogel‐based Bio‐Inks on Extrusion‐based Bioprinting

Author(s):  
Bruna Regina Maciel ◽  
Kubilay Baki ◽  
Claude Oelschlaeger ◽  
Norbert Willenbacher
Keyword(s):  
2011 ◽  
Vol 26 (4) ◽  
pp. 438-444 ◽  
Author(s):  
Sylwia Bialczak ◽  
Bjarne Holmbom ◽  
Anna Sundberg ◽  
Jouko Peltonen
Keyword(s):  

Author(s):  
Sudarshan Singh ◽  
S S Shyale ◽  
H G Sandip

In present investigation liquisolid compact technique is investigated as a tool for enhanced dissolution of poorly water-soluble drug Ketoconazole. The liquisolid tablets were formulated with liquid medications, namely Propylene Glycol (PG) drug concentrations, 60% w/w, 70% w/w and 80% w/w. Avicel pH102 was used as a carrier material, Aerosil 200 as a coating material and Sodium starch glycollate as a super-disintegrant. Quality control tests, such as uniformity of tablet weight, uniformity of drug content, tablet hardness, friability test, disintegration and dissolution tests were performed to evaluate prepared tablets. For further confirmation of results the liquisolid compacts were evaluated by XRD and FTIR studies to prove that, solubility of Ketoconazole has been increased by liquisolid compact technique. From the results obtained, it was be speculated that such systems exhibit enhanced drug release profiles due to increased wetting properties and surface of drug available for dissolution. As liquisolid compacts demonstrated significantly higher drug release rates, in PG as compared to directly compressible tablets and conventional wet granulation, we lead to conclusion that it could be a promising strategy in improving the dissolution of poor water soluble drugs and formulating immediate release solid dosage forms.  


2020 ◽  
Vol 14 (1) ◽  
pp. 14-20 ◽  
Author(s):  
Dan Tian ◽  
Dan-Ni Yu ◽  
Yi-Ming Xu ◽  
Xu-Yin Ding ◽  
Zhou-Yu Zhang ◽  
...  

Background: Though there are many patents on silk, patents on sea silk are rare. Sea silk is one of the most coveted materials in the world, and the technology to make sea silk is at an extremely high risk of extinction. Unlike spider dragline silk and silkworm silk, this natural silk has been forgotten in the academic commune for millennia, though it has many fascinating properties: high strength, remarkable adhesion, extreme lightweight, and others. Method: Here we report that mussel-derived silk fibers can be fabricated by electrospinning. Instead of extracting proteins from byssus, we directly use the protein solution from alive blue mussels, which are intensely commercially used. The protein solution and the polyvinyl alcohol solution are mixed together to produce mussel-based silk fibers. Results: The mussel-based silk fibers have many special properties like high mechanical strength, remarkable super-contraction and good wetting properties. Conclusion: The electrospinning mussel-based silk fibers have the potential for use as a replacement for the rarest sea silk and as a new bio-inspired material with multi-functions.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 901
Author(s):  
Miklós Berczeli ◽  
Zoltán Weltsch

The development of bonding technology and coating technologies require the use of modern materials and topologies for the demanding effect and modification of their wetting properties. For the industry, a process modification process that can be integrated into a process is the atmospheric pressure of air operation plasma surface treatment. This can be classified and evaluated based on the wettability, which has a significant impact on the adhesive force. The aim is to improve the wetting properties and to find the relationship between plasma treatment parameters, wetting, and adhesion. High Impact PolyStyrene (HIPS) was used as an experimental material, and then the plasma treatment can be treated with various adjustable parameters. The effect of plasma parameters on surface roughness, wetting contact angle, and using Fowkes theory of the surface energy have been investigated. Seven different plasma jet treatment distances were tested, combined with 5 scan speeds. Samples with the best plasma parameters were prepared from 25 mm × 25 mm overlapping adhesive joints using acrylic/cyanoacrylate. The possibility of creating a completely hydrophilic surface was achieved, where the untreated wetting edge angle decreased from 88.2° to 0° for distilled water and from 62.7° to 0° in the case of ethylene glycol. The bonding strength of High Impact PolyStyrene was increased by plasma treatment by 297%.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 628
Author(s):  
Kazuma Kurihara ◽  
Ryohei Hokari ◽  
Naoki Takada

We investigated the enhancement of the capillary effect in a plastic capillary tube using only a nanostructured surface. Since plastic is a hydrophobic material, the capillary effect does not emerge without an additional coating or plasma treatment process. Therefore, capillary effect enhancement by the nanostructure fabrication method is expected to reduce the cost and minimise the contamination produced in the human body. By combining a hydrophilic nylon resin and a nanostructure at the tip of the plastic pipette, we could confirm that the capillary effect was produced solely by the tube fabrication process. The produced capillary effect increased linearly with increasing nanostructure height when a standard solution with a surface tension of 70 mN·m−1 was used. Thus, we can conclude that including the plastic part with nanostructure can be useful for biomedical applications. In addition, we suggest that the proposed method is highly effective in controlling the wetting properties of plastic surfaces, compared to the typical coating or plasma treatment processes.


Author(s):  
Tran Thi Bao Le ◽  
Candice Divine-Ayela ◽  
Alberto Striolo ◽  
David R. Cole

Understanding the wetting properties of reservoir rocks can be of great benefit for advanced applications such as the effective trapping and geological storage of CO2. Despite their importance, not all...


Nano Letters ◽  
2003 ◽  
Vol 3 (3) ◽  
pp. 419-423 ◽  
Author(s):  
Alexander V. Neimark ◽  
Sigrid Ruetsch ◽  
Konstantin G. Kornev ◽  
Peter I. Ravikovitch ◽  
Philippe Poulin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document