scholarly journals Right ventricular dominant myocarditis requiring cardiac resynchronization therapy‐defibrillator: a case report

2021 ◽  
Author(s):  
Takanori Sato ◽  
Togo Iwahana ◽  
Ryo Ito ◽  
Yusuke Kondo ◽  
Yoshio Kobayashi
2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Vanita Arora ◽  
Francesco Zanon ◽  
Viveka Kumar ◽  
Vivek Kumar ◽  
Pawan Suri

Abstract Background As per the literature, patients with intraventricular conduction delay (IVCD) do not respond well to cardiac resynchronization therapy (CRT) alone. They need advanced technological approach and out of the box thinking for a good response. Case Ours is a case of ischemic cardiomyopathy with wide QRS-IVCD, a non-responder to CRT. While planning for replacement of the device for early replacement indicator (ERI), we decided to do His-optimized CRT/left bundle optimized CRT (HOT-CRT/LOT-CRT) for the patient. Conclusion The challenges we faced with the present available hardware paved a way for insisting on the limitation of the available lumenless lead to penetrate calcified the septum and importance of the pre-procedure evaluation of intraventricular septum (IVS) for calcification by more than just echocardiography.


2021 ◽  
Vol 22 (Supplement_1) ◽  
Author(s):  
E Galli ◽  
V Le Rolle ◽  
OA Smiseth ◽  
J Duchenne ◽  
JM Aalen ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: None. Background Despite having all a systolic heart failure and broad QRS, patients proposed for cardiac resynchronization therapy (CRT) are highly heterogeneous and it remains extremely complicated to predict the impact of the device on left ventricular (LV) function and outcomes. Objectives We sought to evaluate the relative impact of clinical, electrocardiographic, and echocardiographic data on the left ventricular (LV) remodeling and prognosis of CRT-candidates by the application of machine learning (ML) approaches. Methods 193 patients with systolic heart failure undergoing CRT according to current recommendations were prospectively included in this multicentre study. We used a combination of the Boruta algorithm and random forest methods to identify features predicting both CRT volumetric response and prognosis (Figure 1). The model performance was tested by the area under the receiver operating curve (AUC). We also applied the K-medoid method to identify clusters of phenotypically-similar patients. Results From 28 clinical, electrocardiographic, and echocardiographic-derived variables, 16 features were predictive of CRT-response; 11 features were predictive of prognosis. Among the predictors of CRT-response, 7 variables (44%) pertained to right ventricular (RV) size or function. Tricuspid annular plane systolic excursion was the main feature associated with prognosis. The selected features were associated with a very good prediction of both CRT response (AUC 0.81, 95% CI: 0.74-0.87) and outcomes (AUC 0.84, 95% CI: 0.75-0.93) (Figure 1, Supervised Machine Learning Panel). An unsupervised ML approach allowed the identifications of two phenogroups of patients who differed significantly in clinical and parameters, biventricular size and RV function. The two phenogroups had significant different prognosis (HR 4.70, 95% CI: 2.1-10.0, p < 0.0001; log –rank p < 0.0001; Figure 1, Unsupervised Machine Learning Panel). Conclusions Machine learning can reliably identify clinical and echocardiographic features associated with CRT-response and prognosis. The evaluation of both RV-size and function parameters has pivotal importance for the risk stratification of CRT-candidates and should be systematically assessed in patients undergoing CRT. Abstract Figure 1


Author(s):  
Phillip E Schrumpf ◽  
Michael Giudici ◽  
Deborah Paul ◽  
Roselyn Krupa ◽  
Cynthia Meirbachtol

Background: Cardiac resynchronization therapy has been shown to improve left ventricular performance in patients with left ventricular dysfunction and a left-sided interventricular conduction delay. This is performed by placing a pacing lead on the lateral left ventricular wall to stimulate the area normally stimulated by the left bundle branch. In patients with right bundle branch block (RBBB), pacing the right bundle branch could also result in resynchronization. Previous studies have shown that right ventricular outflow septal (RVOS) pacing does, in fact, utilize the native conduction system. Methods: 62 consecutive patients, 46 male/16 female, aged 75 +/− 10.5 yr, with RBBB and indications for pacing, underwent RVOS lead placement using commercially available pacing systems. The patients subsequently underwent bedside A-V optimization to achieve the narrowest QRS duration and most “normal” QRS complex. Echocardiography was performed to evaluate changes in wall motion comparing baseline with optimal pacing. Results: Baseline mean QRS duration 146 +/− 20.9 ms Optimized mean QRS duration 111 +/− 20.5 ms Average decrease in QRS duration -35 +/− 21.5 ms p < 0.001 Echocardiography demonstrated improvement in septal contraction abnormalities. Conclusions: 1) RVOS pacing in RBBB patients can significantly narrow the QRS complex on ECG. 2) Septal contraction abnormalities due to RBBB can be improved with RVOS pacing and optimal A-V timing. 3) Further studies are warranted to evaluate this therapy in a heart failure population.


Sign in / Sign up

Export Citation Format

Share Document