Carbonate-Melt Oxidized Iridium Wire for pH Sensing

2003 ◽  
Vol 15 (20) ◽  
pp. 1606-1615 ◽  
Author(s):  
Min Wang ◽  
Sheng Yao
2012 ◽  
Vol 22 (16) ◽  
pp. 7782 ◽  
Author(s):  
Matthew J. O'Malley ◽  
Patrick M. Woodward ◽  
Henk Verweij
Keyword(s):  

2000 ◽  
Vol 628 ◽  
Author(s):  
Mark A. Clarner ◽  
Michael J. Lochhead

ABSTRACTOrganically modified silica gels and dye-doped silica gels have been patterned into micrometer-scale structures on a substrate using micro molding in capillaries (MIMIC). This approach is from a class of elastomeric stamping and molding techniques collectively known as soft lithography. Soft lithography and sol-gel processing share attractive features in that they are relatively benign processes performed at ambient conditions, which makes both techniques compatible with a wide variety of organic molecules, molecular assemblies, and biomolecules. The combination of sol-gel and soft lithography, therefore, holds enormous promise as a tool for microfabrication of materials with optical, chemical, or biological functionality that are not readily patterned with conventional methods. This paper describes our investigation of micro-patterned organic-inorganic hybrid materials containing indicator dyes for microfluidic sensor applications. Reversible colorimetric pH sensing via entrapped reagents is demonstrated in a prototype microfluidic sensor element. Patterned structures range from one to tens of micrometers in cross-section and are up to centimeters in length. Fundamental chemical processing issues associated with mold filling, cracking and sensor stability are discussed.


2020 ◽  
Author(s):  
Ryan Weber ◽  
Martin McCullagh

<p>pH-switchable, self-assembling materials are of interest in biological imaging and sensing applications. Here we propose that combining the pH-switchability of RXDX (X=Ala, Val, Leu, Ile, Phe) peptides and the optical properties of coumarin creates an ideal candidate for these materials. This suggestion is tested with a thorough set of all-atom molecular dynamics simulations. We first investigate the dependence of pH-switchabiliy on the identity of the hydrophobic residue, X, in the bare (RXDX)<sub>4</sub> systems. Increasing the hydrophobicity stabilizes the fiber which, in turn, reduces the pH-switchabilty of the system. This behavior is found to be somewhat transferable to systems in which a single hydrophobic residue is replaced with a coumarin containing amino acid. In this case, conjugates with X=Ala are found to be unstable and both pHs while conjugates with X=Val, Leu, Ile and Phe are found to form stable β-sheets at least at neutral pH. The (RFDF)<sub>4</sub>-coumarin conjugate is found to have the largest relative entropy value of 0.884 +/- 0.001 between neutral and acidic coumarin ordering distributions. Thus, we posit that coumarin-(RFDF)<sub>4</sub> containing peptide sequences are ideal candidates for pH-sensing bioelectronic materials.</p>


2020 ◽  
Vol 37 (2) ◽  
pp. 1900404
Author(s):  
Xinyuan Xie ◽  
Yingshi Deng ◽  
Jiehui Peng ◽  
Shiqi Zheng ◽  
Chezheng Cao ◽  
...  

2021 ◽  
Vol 213 (2) ◽  
pp. 107729
Author(s):  
Teige R.S. Matthews-Palmer ◽  
Nayim Gonzalez-Rodriguez ◽  
Thomas Calcraft ◽  
Signe Lagercrantz ◽  
Tobias Zachs ◽  
...  

Author(s):  
Nawaz Shafi ◽  
Aasif Mohamad Bhat ◽  
Jaydeep Singh Parmar ◽  
Chitrakant Sahu ◽  
Periasamy C

2021 ◽  
Vol 28 (2) ◽  
Author(s):  
Ayben Pakolpakçıl ◽  
Bilgen Osman ◽  
Gökhan Göktalay ◽  
Elif Tümay Özer ◽  
Yasemin Şahan ◽  
...  

Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 42
Author(s):  
Shimrith Paul Shylendra ◽  
Wade Lonsdale ◽  
Magdalena Wajrak ◽  
Mohammad Nur-E-Alam ◽  
Kamal Alameh

In this work, a solid-state potentiometric pH sensor is designed by incorporating a thin film of Radio Frequency Magnetron Sputtered (RFMS) Titanium Nitride (TiN) working electrode and a commercial Ag|AgCl|KCl double junction reference electrode. The sensor shows a linear pH slope of −59.1 mV/pH, R2 = 0.9997, a hysteresis as low as 1.2 mV, and drift below 3.9 mV/h. In addition, the redox interference performance of TiN electrodes is compared with that of Iridium Oxide (IrO2) counterparts. Experimental results show −32 mV potential shift (E0 value) in 1 mM ascorbic acid (reducing agent) for TiN electrodes, and this is significantly lower than the −114 mV potential shift of IrO2 electrodes with sub-Nernstian sensitivity. These results are most encouraging and pave the way towards the development of miniaturized, cost-effective, and robust pH sensors for difficult matrices, such as wine and fresh orange juice.


Sign in / Sign up

Export Citation Format

Share Document