Model-based unscented Kalman filter observer design for lithium-ion battery state of charge estimation

2017 ◽  
Vol 42 (4) ◽  
pp. 1603-1614 ◽  
Author(s):  
Taipeng Wang ◽  
Sizhong Chen ◽  
Hongbin Ren ◽  
Yuzhuang Zhao
2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Jianping Gao ◽  
Hongwen He

Accurate state of charge (SoC) estimation is of great significance for the lithium-ion battery to ensure its safety operation and to prevent it from overcharging or overdischarging. To achieve reliable SoC estimation for Li4Ti5O12lithium-ion battery cell, three filtering methods have been compared and evaluated. A main contribution of this study is that a general three-step model-based battery SoC estimation scheme has been proposed. It includes the processes of battery data measurement, parametric modeling, and model-based SoC estimation. With the proposed general scheme, multiple types of model-based SoC estimators have been developed and evaluated for battery management system application. The detailed comparisons on three advanced adaptive filter techniques, which include extend Kalman filter, unscented Kalman filter, and adaptive extend Kalman filter (AEKF), have been implemented with a Li4Ti5O12lithium-ion battery. The experimental results indicate that the proposed model-based SoC estimation approach with AEKF algorithm, which uses the covariance matching technique, performs well with good accuracy and robustness; the mean absolute error of the SoC estimation is within 1% especially with big SoC initial error.


Sign in / Sign up

Export Citation Format

Share Document