Review of contemporary energy harvesting techniques and their feasibility in wireless geophones

Author(s):  
Naveed Iqbal ◽  
Mudassir Masood ◽  
Ali Arshad Nasir ◽  
Khurram Karim Qureshi
Author(s):  
Aya Mabrouki ◽  
Mohamed Latrach

This chapter proposes an overview of microwave energy harvesting with focuses on the design of high efficiency low power rectifying circuits. A background survey of RF energy harvesting techniques is presented first. Then, the performances of conventional rectifier topologies are analyzed and discussed. A review of the most efficient rectenna designs, from the state of the art, is also presented. Design considerations for low power rectifier operations are detailed and new high efficient rectifying circuits are designed and evaluated in both GSM and ISM bands under low power constraints.


2020 ◽  
Vol 13 (2) ◽  
pp. 42-59
Author(s):  
Ritu Garg ◽  
Neha Garg

To guarantee the uninterrupted operation of an IoT node, IoT nodes are installed with energy harvesting techniques to prolong their lifetime and recharge their batteries. Mostly energy harvesting systems collect energy from sunlight and wind. However, the energy harvested from the sunlight is non-continuous and energy harvested from the wind is insufficient for continuously powering an IoT node. Thus, to resolve this problem, authors proposed an energy harvesting system namely SWEH which harvests energy from solar light and wind. In this article, authors proposed a scheduling algorithm to balance the energy produced by SWEH and the energy consumption of an IoT node that results in the energy neutral system. Results from simulation analysis clearly manifest that the proposed SWEH system extracts more energy as compared to energy produced by a single solar panel or wind turbine. With the help of simulation results, authors also show that the proposed algorithm leaves the system in energy neutral state at the end of particular time frame.


2017 ◽  
Vol 28 (19) ◽  
pp. 2810-2822 ◽  
Author(s):  
Abdullah Nammari ◽  
Hamzeh Bardaweel

Over the past decade, there has been special interest in developing nonlinear energy harvesters capable of operating over a wideband frequency spectrum. Chief among the nonlinear energy harvesting techniques is magnetic levitation–based energy harvesting. Nonetheless, current nonlinear magnetic levitation–based energy harvesting approaches encapsulate design challenges. This work investigates some of the design issues and limitations faced by traditional magnetic levitation–based energy harvesters such as damping schemes and stiffness nonlinearities. Both experiment and model are used to quantify and evaluate damping regimes and stiffness nonlinearities present in magnetic levitation–based energy harvesters. Results show that dry friction, mostly ignored in magnetic levitation–based energy harvesting literature, contributes to the overall energy dissipation. Measured and modeled magnetic forces–displacement curves suggest that stiffness nonlinearities are weak over moderate distances. An enhanced design utilizing a combination of mechanical and magnetic springs is introduced to overcome some of these limitations. A non-dimensional model of the proposed design is developed and used to investigate the enhanced architecture. The unique potential energy profile suggests that the proposed nonlinear energy harvester outperforms the linear version by steepening the displacement response and shifting the resonance frequency, resulting in a larger bandwidth for which power can be harvested.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
B. Molina-Farrugia ◽  
A. Rivadeneyra ◽  
J. Fernández-Salmerón ◽  
F. Martínez-Martí ◽  
J. Banqueri ◽  
...  

An RFID tag with energy harvesting and sensing capabilities is presented in this paper. This RFID tag is based on an integrated circuit (SL900A) that incorporates a sensor front-end interface capable of measuring voltages, currents, resistances, and capacitances. The aim of this work is to improve the communication distance from the reader to the tag using energy harvesting techniques. Once the energy source and harvester are chosen according to the environment of work, the conditioning circuit for energy management has to be appropriately designed with respect to the nature of the transductor. As a proof of concept, a photovoltaic panel is used in this work to collect the energy from the environment that is managed by a DC-DC converter and stored in a capacitor acting as battery. Such energy is used to support the power system of the tag, giving autonomy to the device and allowing data logging. In particular, the developed tag monitors the ambient temperature and the power voltage. It would be possible to add external sensors without changing the architecture. An increase in the read range of more than 200% is demonstrated. This feature is especially interesting in environments where the access could be difficult.


Sign in / Sign up

Export Citation Format

Share Document