scholarly journals A generalizable box model for kinetic clumped isotope effects in the CaCO3 -DIC-H2O system

2021 ◽  
Author(s):  
James Watkins ◽  
Laurent Devriendt
2017 ◽  
Vol 196 ◽  
pp. 307-325 ◽  
Author(s):  
Andrew R. Whitehill ◽  
Lars Magnus T. Joelsson ◽  
Johan A. Schmidt ◽  
David T. Wang ◽  
Matthew S. Johnson ◽  
...  

Author(s):  
Guannan Dong ◽  
Hao Xie ◽  
Michael Formolo ◽  
Michael Lawson ◽  
Alex Sessions ◽  
...  

2017 ◽  
Vol 197 ◽  
pp. 14-26 ◽  
Author(s):  
Michael A. Webb ◽  
Yimin Wang ◽  
Bastiaan J. Braams ◽  
Joel M. Bowman ◽  
Thomas F. Miller

2016 ◽  
Vol 16 (7) ◽  
pp. 4439-4449 ◽  
Author(s):  
L. M. T. Joelsson ◽  
J. A. Schmidt ◽  
E. J. K. Nilsson ◽  
T. Blunier ◽  
D. W. T. Griffith ◽  
...  

Abstract. Methane is the second most important long-lived greenhouse gas and plays a central role in the chemistry of the Earth's atmosphere. Nonetheless there are significant uncertainties in its source budget. Analysis of the isotopic composition of atmospheric methane, including the doubly substituted species 13CH3D, offers new insight into the methane budget as the sources and sinks have distinct isotopic signatures. The most important sink of atmospheric methane is oxidation by OH in the troposphere, which accounts for around 84 % of all methane removal. Here we present experimentally derived methane + OH kinetic isotope effects and their temperature dependence over the range of 278 to 313 K for CH3D and 13CH3D; the latter is reported here for the first time. We find kCH4/kCH3D = 1.31 ± 0.01 and kCH4/k13CH3D = 1.34 ± 0.03 at room temperature, implying that the methane + OH kinetic isotope effect is multiplicative such that (kCH4/k13CH4)(kCH4/kCH3D) = kCH4/k13CH3D, within the experimental uncertainty, given the literature value of kCH4/k13CH4 = 1.0039 ± 0.0002. In addition, the kinetic isotope effects were characterized using transition state theory with tunneling corrections. Good agreement between the experimental, quantum chemical, and available literature values was obtained. Based on the results we conclude that the OH reaction (the main sink of methane) at steady state can produce an atmospheric clumped isotope signal (Δ(13CH3D) = ln([CH4][13CH3D]/[13CH4][CH3D])) of 0.02 ± 0.02. This implies that the bulk tropospheric Δ(13CH3D) reflects the source signal with relatively small adjustment due to the sink signal (i.e., mainly OH oxidation).


2018 ◽  
Vol 235 ◽  
pp. 402-430 ◽  
Author(s):  
Landon K. Burgener ◽  
Katharine W. Huntington ◽  
Ronald Sletten ◽  
James M. Watkins ◽  
Jay Quade ◽  
...  

2021 ◽  
Author(s):  
Virgil Dragusin ◽  
Vasile Ersek ◽  
Alvaro Fernandez ◽  
Roxana Ionete ◽  
Andreea Iordache ◽  
...  

<p>Ascunsă cave (Romania) is the subject of a monitoring program since 2012. While the cave air temperature was very stable around 7°C for most of the time, it experienced in 2019 a 3°C rise, and remained high until the present.</p><p>We present here δ<sup>18</sup>O, δ<sup>13</sup>C, and clumped isotope results from calcite farmed at two drip points inside the cave (POM X and POM 2). POM X has a slower drip rate than POM 2 and deposits calcite more continuously. Calcite deposition has been shown to depend on cave air CO<sub>2</sub> concentration, which controls the drip water pH and, further, the calcite saturation index.</p><p>In 2019, δ<sup>18</sup>O values at both sites quickly shifted to lower values as a response to the increase in temperature. At POM X, values were situated between approximately -7.2‰ and -7.6‰ before this transition, whereas in 2019 they shifted to -7.8‰ - -8.0‰. At POM 2, where values were generally lower, they shifted from -7.5‰ to -7.8‰ to -8.0‰.</p><p>Clumped isotope temperature estimates mostly agree, within measurement error, with measured cave temperature. This agreement is notable given that strong offsets are commonly observed in mid-latitude caves, reflecting kinetic fractionation effects. However, intervals with deviations from cave temperature are also observed, suggesting variations in isotopic disequilibrium conditions with time.</p><p>Here we will discuss these isotope changes in relation to cave air temperature and CO<sub>2</sub> concentration, drip water isotope values and elemental chemistry, as well as in relation to drip rates, in order to improve our understanding of calcite precipitation and isotope effects in caves.</p>


2007 ◽  
Author(s):  
Joel T. Nadler ◽  
Tyrel J. Starks ◽  
Lynda M. Sagrestano ◽  
Paul D. Sarvela
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document