scholarly journals Variability of the paracingulate sulcus and morphometry of the medial frontal cortex: Associations with cortical thickness, surface area, volume, and sulcal depth

2008 ◽  
Vol 29 (2) ◽  
pp. 222-236 ◽  
Author(s):  
Alex Fornito ◽  
Stephen J. Wood ◽  
Sarah Whittle ◽  
Jack Fuller ◽  
Chris Adamson ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Meng Li ◽  
Jianhao Yan ◽  
Hua Wen ◽  
Jinzhi Lin ◽  
Lianbao Liang ◽  
...  

AbstractNeuroimaging studies have documented brain structural alterations induced by chronic pain, particularly in gray matter volume. However, the effects of trigeminal neuralgia (TN), a severe paroxysmal pain disorder, on cortical morphology are not yet known. In this study, we recruited 30 TN patients and 30 age-, and gender-matched healthy controls (HCs). Using Computational Anatomy Toolbox (CAT12), we calculated and compared group differences in cortical thickness, gyrification, and sulcal depth with two-sample t tests (p < 0.05, multiple comparison corrected). Relationships between altered cortical characteristics and pain intensity were investigated with correlation analysis. Compared to HCs, TN patients exhibited significantly decreased cortical thickness in the left inferior frontal, and left medial orbitofrontal cortex; decreased gyrification in the left superior frontal cortex; and decreased sulcal depth in the bilateral superior frontal (extending to anterior cingulate) cortex. In addition, we found significantly negative correlations between the mean cortical thickness in left medial orbitofrontal cortex and pain intensity, and between the mean gyrification in left superior frontal cortex and pain intensity. Chronic pain may be associated with abnormal cortical thickness, gyrification and sulcal depth in trigeminal neuralgia. These morphological changes might contribute to understand the underlying neurobiological mechanism of trigeminal neuralgia.


2019 ◽  
Author(s):  
Holly M. Hasler ◽  
Timothy T. Brown ◽  
Natacha Akshoomoff

AbstractBackgroundPreterm birth is associated with an increased risk of neonatal brain injury, which can lead to alterations in brain maturation. Advances in neonatal care have dramatically reduced the incidence of the most significant medical consequences of preterm birth. Relatively healthy preterm infants remain at increased risk for subtle injuries that impact future neurodevelopmental and functioning.AimsTo investigate the gray matter morphometry measures of cortical thickness, surface area, and sulcal depth in the brain using magnetic resonance imaging at 5 years of age in healthy children born very preterm.Study designCohort studySubjectsParticipants were 52 children born very preterm (VPT; less than 33 weeks gestational age) and 37 children born full term.Outcome measuresCortical segmentation and calculation of morphometry measures were completed using FreeSurfer version 5.3.0 and compared between groups using voxel-wise, surface-based analyses.ResultsThe VPT group had a significantly thinner cortex in temporal and parietal regions as well as thicker gray matter in the occipital and inferior frontal regions. Reduced surface area was found in the fusiform area in the VPT group. Sulcal depth was also lower in the VPT group within the posterior parietal and inferior temporal regions and greater sulcal depth was found in the middle temporal and medial parietal regions. Results in some of these regions were correlated with gestational age at birth in the VPT group.ConclusionsThe most widespread differences between the VPT and FT groups were found in cortical thickness. These findings may represent a combination of delayed maturation and permanent alterations caused by the perinatal processes associated with very preterm birth.


2018 ◽  
Vol 29 (9) ◽  
pp. 3902-3911 ◽  
Author(s):  
Minyoung Jung ◽  
Yoshifumi Mizuno ◽  
Takashi X Fujisawa ◽  
Shinichiro Takiguchi ◽  
Jian Kong ◽  
...  

Abstract The catechol-O-methyltransferase (COMT) gene is associated with frontal cortex development and the pathophysiology of attention-deficit/hyperactivity disorder (ADHD). However, how the COMT gene impacts brain structure and behavior in ADHD remains unknown. In the present study, we identify the effect of COMT on cortical thickness and surface area in children with ADHD and children with typically developing (TD) using a machine learning approach. In a sample of 39 children with ADHD and 34 age- and IQ-matched TD children, we found that cortical thickness and surface area differences were predominantly observed in the frontal cortex. Furthermore, a path analysis revealed that a COMT genotype affected abnormal development of the frontal cortex in terms of both cortical thickness and surface area and was associated with working memory changes in children with ADHD. Our study confirms that the role of COMT in ADHD is not restricted to the development of behavior but may also affect the cortical thickness and surface area. Thus, our findings may help to improve the understanding of the neuroanatomic basis for the relationship between the COMT genotype and ADHD pathogenesis.


PLoS ONE ◽  
2017 ◽  
Vol 12 (3) ◽  
pp. e0171803 ◽  
Author(s):  
Hyunjin Park ◽  
Yeong-Hun Park ◽  
Jungho Cha ◽  
Sang Won Seo ◽  
Duk L. Na ◽  
...  

Cell Calcium ◽  
2021 ◽  
pp. 102388
Author(s):  
Alex L. Keyes ◽  
Young-cho Kim ◽  
Peter J. Bosch ◽  
Yuriy M. Usachev ◽  
Georgina M. Aldridge

Neuron ◽  
2011 ◽  
Vol 69 (3) ◽  
pp. 548-562 ◽  
Author(s):  
Itzhak Fried ◽  
Roy Mukamel ◽  
Gabriel Kreiman

2021 ◽  
pp. 1-14
Author(s):  
Helena M. Blumen ◽  
Emily Schwartz ◽  
Gilles Allali ◽  
Olivier Beauchet ◽  
Michele Callisaya ◽  
...  

Background: The motoric cognitive risk (MCR) syndrome is a pre-clinical stage of dementia characterized by slow gait and cognitive complaint. Yet, the brain substrates of MCR are not well established. Objective: To examine cortical thickness, volume, and surface area associated with MCR in the MCR-Neuroimaging Consortium, which harmonizes image processing/analysis of multiple cohorts. Methods: Two-hundred MRIs (M age 72.62 years; 47.74%female; 33.17%MCR) from four different cohorts (50 each) were first processed with FreeSurfer 6.0, and then analyzed using multivariate and univariate general linear models with 1,000 bootstrapped samples (n-1; with resampling). All models adjusted for age, sex, education, white matter lesions, total intracranial volume, and study site. Results: Overall, cortical thickness was lower in individuals with MCR than in those without MCR. There was a trend in the same direction for cortical volume (p = 0.051). Regional cortical thickness was also lower among individuals with MCR than individuals without MCR in prefrontal, insular, temporal, and parietal regions. Conclusion: Cortical atrophy in MCR is pervasive, and include regions previously associated with human locomotion, but also social, cognitive, affective, and motor functions. Cortical atrophy in MCR is easier to detect in cortical thickness than volume and surface area because thickness is more affected by healthy and pathological aging.


Sign in / Sign up

Export Citation Format

Share Document