Lnc‐MEG3 inhibits invasion, migration, and epithelial– mesenchymal transition of nasopharyngeal carcinoma cells by regulating sequestosome 1

Head & Neck ◽  
2021 ◽  
Author(s):  
Caifeng Zhou ◽  
Huiling Cao ◽  
Xinyu Meng ◽  
Qiyao Zhang
2021 ◽  
Vol 49 (3) ◽  
pp. 030006052199651
Author(s):  
Jie Yang ◽  
Enzi Feng ◽  
Yanxin Ren ◽  
Shun Qiu ◽  
Liufang Zhao ◽  
...  

Objectives To identify key long non-coding (lnc)RNAs responsible for the epithelial–mesenchymal transition (EMT) of CNE1 nasopharyngeal carcinoma cells and to investigate possible regulatory mechanisms in EMT. Methods CNE1 cells were divided into transforming growth factor (TGF)-β1-induced EMT and control groups. The mRNA and protein expression of EMT markers was determined by real-time quantitative PCR and western blotting. Differentially expressed genes (DEGs) between the two groups were identified by RNA sequencing analysis, and DEG functions were analyzed by gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses. EMT marker expression was re-evaluated by western blotting after knockdown of a selected lncRNA. Results TGF-β1-induced EMT was characterized by decreased E-cadherin and increased vimentin, N-cadherin, and Twist expression at both mRNA and protein levels. Sixty lncRNA genes were clustered in a heatmap, and mRNA expression of 14 dysregulated lncRNAs was consistent with RNA sequencing. Knockdown of lnc-PNRC2-1 increased expression of its antisense gene MYOM3 and reduced expression of EMT markers, resembling treatment with the TGF-β1 receptor inhibitor LY2109761. Conclusion Various lncRNAs participated indirectly in the TGF-β1-induced EMT of CNE1 cells. Lnc-PNRC2-1 may be a key regulator of this and is a potential target to alleviate CNE1 cell EMT.


Author(s):  
Jian Zhang ◽  
Xin Wen ◽  
Xian-Yue Ren ◽  
Ying-Qin Li ◽  
Xin-Ran Tang ◽  
...  

An amendment to this paper has been published and can be accessed via the original article.


2021 ◽  
Vol 13 (9) ◽  
pp. 1637-1643
Author(s):  
Zhenxi Cai

Nasopharyngeal carcinoma, a type of malignant tumor of the head and neck region, has strong resistance to anticancer drugs, which seriously hinders clinical treatment. In this study, we investigated the effects of different concentrations of paclitaxel-containing nano-apoliposomes on cisplatin (DDP)-resistant nasopharyngeal carcinoma cells in vitro, referred to as CNE1/DDP and CNE2/DDP. Cell behaviors were then analyzed, including proliferation, migration, and invasion abilities. In addition, levels of proteins related to apoptosis and the epithelial-mesenchymal transition (EMT) were analyzed using western blot assays and mRNA levels of EMT-related genes were measured using qRT-PCR. Our results demonstrated that paclitaxel-containing nano-apoliposomes decrease proliferation, migration, invasion, and EMT of CNE1/DDP and CNE2/DDP cells, demonstrating their inhibitory effects on cisplatin-resistant nasopharyngeal carcinoma cells. This work demonstrates the potential value of paclitaxe-containing nano-apoliposomes in the clinical treatment of drug-resistant nasopharyngeal carcinoma.


Sign in / Sign up

Export Citation Format

Share Document