Near‐infrared emission Cu, N‐doped carbon dots for human umbilical vein endothelial cell labeling and their biocompatibility in vitro

Author(s):  
Peide Zhu ◽  
Ting Zhang ◽  
Jianxiong Li ◽  
Junfei Ma ◽  
Xiangcheng Ouyang ◽  
...  
Crystals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 119
Author(s):  
Xiaofeng Fan ◽  
Laiqin Gu ◽  
Yiling Hu ◽  
Qi Zhu

Uniformly dispersed luminescent probes with a high brightness and high resolution are desired in bio imaging fields. Here, ~100 nm sized and well-dispersed spheres of RE3+ doped α-NaYF4 (rare earth (RE) = Eu, Tb, Ce, Er, and Tm) have been facile synthesized through hydrothermal processing in the absence of a template, followed by a proper annealing. The processing window of the cubic structured spheres is wide, because the hydrothermal products are independent of the processing conditions, including reaction time and temperature. The original morphology and crystal structure can be well retained with a calcination temperature up to 600 °C. However, calcination gives rise to a reduction of particle sizes, as a result of the crystallite growth and densification. Under ultraviolet radiation, α-NaYF4:RE3+ spheres show characteristic f-f emissions of RE3+ (RE = Eu, Tb, Ce, Er, and Tm), and exhibit orange red, green, ultraviolet (UV), blue green, and blue emissions, respectively. Mainly because of the near-infrared emission at ~697 nm (5D0→7F4 transitions of Eu3+), the successful imaging of macrophages was achieved by NH2-NaYF4:Eu3+ probes, indicating their excellent imaging capacity for cells in vitro.


2020 ◽  
Vol 31 (3) ◽  
pp. 769-773 ◽  
Author(s):  
Jian Zhong ◽  
Xinmian Chen ◽  
Miaoran Zhang ◽  
Chaoxin Xiao ◽  
Lulu Cai ◽  
...  

Carbon ◽  
2021 ◽  
Vol 182 ◽  
pp. 860-861
Author(s):  
Li-ping Li ◽  
Xiao-feng Ren ◽  
Pei-rong Bai ◽  
Yan Liu ◽  
Wei-yue Xu ◽  
...  

2021 ◽  
Vol 36 (3) ◽  
pp. 632-638
Author(s):  
Li-ping Li ◽  
Xiao-feng Ren ◽  
Pei-rong Bai ◽  
Yan Liu ◽  
Wei-yue Xu ◽  
...  

2020 ◽  
Author(s):  
Sylvestre P. J. T. Bachollet ◽  
Cyril Addi ◽  
Jean-Maurice Mallet ◽  
Blaise Dumat

A series of red-emitting and near-infrared fluorogenic protein probes based on push-pull molecular rotor structures was developed. After characterization of their optical properties using Bovine Serum Albumin as a model protein, they were conjugated to a halogenoalkane ligand in order to target the protein self-labeling tag HaloTag. The interaction with HaloTag was investigated in vitro and then the most promising probes were applied to live-cell imaging in wash-free conditions using fluorogenic and chemogenetic targeting of HaloTag fusion proteins.<br>


2007 ◽  
Vol 342-343 ◽  
pp. 305-308 ◽  
Author(s):  
Sh.N. Ge ◽  
Jun Ying Chen ◽  
Yong Xiang Leng ◽  
Nan Huang

In prior work we have shown that titanium oxide (Ti-O) thin films have good blood compatibility. However, as well as being hemocompatible, biomaterials used in contact with blood should be cell compatible also. In the work described here, Ti-O films were synthesized using unbalanced magnetron sputtering (UBMS) and were modified by immobilizing laminin on the film surface for improving human umbilical vein endothelial cell (HUVEC) adhesion and growth. Scanning electron microscopy (SEM), Fourier Transform Infrared spectroscopy (FTIR) and contact-angle measurements were used to investigate the surface characteristics of the Ti-O films and the modified Ti-O films. The results suggest that Laminin can be biochemically immobilized on the Ti-O film surface. The modified layer of Laminin can improve the hydrophilicity and wettability of Ti-O films. In vitro HUVEC investigations reveal that Laminin immobilized on the film surface greatly enhances cell adhesion and growth on Ti-O films.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4218-4218
Author(s):  
Nicholas J. Greco ◽  
Brandon Eilertson ◽  
Jason J. Banks ◽  
Paul Scheid ◽  
Marcie Finney ◽  
...  

Abstract To assess in vitro angiogenesis, cellular co-culture assays have been utilized to study adherence, spreading, differentiation and proliferation, and migration of endothelial cells. Formation of tubule or capillary-like networks is influenced by the presence of vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF) but other factors provided by cell sources and/or direct contact with multiple cell types may facilitate this formation. The hypothesis of this study is that umbilical cord blood (UCB)-derived endothelial precursor cells (EPCs) may influence the formation of human umbilical vein endothelial cell (HUVEC) tubule structures during angiogenesis. Methods: UCB-derived EPCs were isolated from CD133negative cells after a 7-day culture on human fibronectin in EGM-2 media. Tubule formation was evaluated (passage 1–2, 20 x 103 or 2 x 103 cells) by adding HUVECs without or with EPCs to cultures of human bone marrow-derived mesenchymal stromal cells (MSCs) under normoxic (20%) conditions (37°C, 5% CO2, containing VEGF, epidermal growth factor, FGF, insulin-like growth factor, heparin, hydrocortisone, and ascorbic acid in EGM-2 medium) for a 2-week period. HUVECs were added to cultures without or with labeling with Vybrant® CM-DiI which allows the temporal observation of tubule formation progress and cellular incorporation. Final tubule formation was confirmed using a primary anti-CD31 (PECAM) antibody followed by a FITC-conjugated secondary antibody for signal amplification. Results: After 2–4 days, linear aggregates of labeled HUVECs (2-D arrangement) were observed. After 14 days, there was remodeling of HUVECs into the development of a 3D network of linear and branched tubule structures. EPCs facilitated the formation of tubules affecting both the extent of tubule formation and also enhanced proliferation of HUVEC cells. A minority (&lt; 5%) of EPCs were incorporated into developing tubules (estimated using CM-Dil-labeled EPCs). To quantify tubule formation, digital pictures of representative areas of culture wells (2–4/well) were acquired. Using Image Pro Plus software, tubules were quantified using multi-parameter analysis with respect to length, area, and perimeter. The presence of EPCs (equal to the number of added HUVECs) significantly enhanced all parameters. In comparison to control samples, the presence of EPCs increased the area, perimeter and size by 15.2-fold, 3.4-fold, and 3.2-fold, respectively. Confocal microscopy revealed that the co-cultures formed anatamoses, indicating the formation of a connected network. Conclusions: Taken together, these results suggest that the presence of cord blood-derived EPCs facilitate tubule formation and development via a heterotypic cell-cell interaction without integrating into the angiogenic structures. Further studies will evaluate the secretion of cytokines and growth factors.


Sign in / Sign up

Export Citation Format

Share Document