Superparamagnetic iron oxide nanoparticles change endothelial cell morphology and mechanics via reactive oxygen species formation

2010 ◽  
Vol 96A (1) ◽  
pp. 186-195 ◽  
Author(s):  
Kivilcim Buyukhatipoglu ◽  
Alisa Morss Clyne
2020 ◽  
Author(s):  
Chukwuazam Nwasike ◽  
Eunsoo Yoo ◽  
Erin Purr ◽  
Amber L. Doiron

<p>This study centers around diagnostic medicine, and severity staging of inflammatory diseases. Previously, we showed that complexation of PEG and Poly(gallol) on superparamagnetic iron oxide nanoparticles turn OFF the MRI contrasting ability of the nanoparticle. However, in the presence of reactive oxygen species, the contrast agent will turn ON. In this article, for the first time, we provide evidence that our MRI contrast agent is sensitive to physiologically relevant ROS and induces antioxidant activity on immune and endothelial cells. This study provides initial evidence of IPC-SPIOs cellular ROS sensitivity and potential activatable properties in biological conditions.</p>


2020 ◽  
Author(s):  
Chukwuazam Nwasike ◽  
Eunsoo Yoo ◽  
Erin Purr ◽  
Amber L. Doiron

<p>This study centers around diagnostic medicine, and severity staging of inflammatory diseases. Previously, we showed that complexation of PEG and Poly(gallol) on superparamagnetic iron oxide nanoparticles turn OFF the MRI contrasting ability of the nanoparticle. However, in the presence of reactive oxygen species, the contrast agent will turn ON. In this article, for the first time, we provide evidence that our MRI contrast agent is sensitive to physiologically relevant ROS and induces antioxidant activity on immune and endothelial cells. This study provides initial evidence of IPC-SPIOs cellular ROS sensitivity and potential activatable properties in biological conditions.</p>


RSC Advances ◽  
2020 ◽  
Vol 10 (68) ◽  
pp. 41305-41314
Author(s):  
Chukwuazam Nwasike ◽  
Eunsoo Yoo ◽  
Erin Purr ◽  
Amber L. Doiron

Complexed IPC-SPIOs scavenge intracellular ROS after internalization.


2010 ◽  
Vol 299 (5) ◽  
pp. H1419-H1427 ◽  
Author(s):  
Bo Shen ◽  
Lin Gao ◽  
Yi-Te Hsu ◽  
Grant Bledsoe ◽  
Makato Hagiwara ◽  
...  

Kallistatin is a regulator of vascular homeostasis capable of controlling a wide spectrum of biological actions in the cardiovascular and renal systems. We previously reported that kallistatin inhibited intracellular reactive oxygen species formation in cultured cardiac and renal cells. The present study was aimed to investigate the role and mechanisms of kallistatin in protection against oxidative stress-induced vascular injury and endothelial cell apoptosis. We found that kallistatin gene delivery significantly attenuated aortic superoxide formation and glomerular capillary loss in hypertensive DOCA-salt rats. In cultured endothelial cells, kallistatin suppressed TNF-α-induced cellular apoptosis, and the effect was blocked by the pharmacological inhibition of phosphatidylinositol 3-kinase and nitric oxide synthase (NOS) and by the knockdown of endothelial NOS (eNOS) expression. The transduction of endothelial cells with adenovirus expressing dominant-negative Akt abolished the protective effect of kallistatin on endothelial apoptosis and caspase activity. In addition, kallistatin inhibited TNF-α-induced reactive oxygen species formation and NADPH oxidase activity, and these effects were attenuated by phosphatidylinositol 3-kinase and NOS inhibition. Kallistatin also prevented the induction of Bim protein and mRNA expression by oxidative stress. Moreover, the downregulation of forkhead box O 1 (FOXO1) and Bim expression suppressed TNF-α-mediated endothelial cell death. Furthermore, the antiapoptotic actions of kallistatin were accompanied by Akt-mediated FOXO1 and eNOS phosphorylation, as well as increased NOS activity. These findings indicate a novel role of kallistatin in the protection against vascular injury and oxidative stress-induced endothelial apoptosis via the activation of Akt-dependent eNOS signaling.


RSC Advances ◽  
2020 ◽  
Vol 10 (13) ◽  
pp. 7559-7569 ◽  
Author(s):  
Tao Liu ◽  
Ru Bai ◽  
Huige Zhou ◽  
Rongqi Wang ◽  
Jing Liu ◽  
...  

Due to the unique physicochemical properties, superparamagnetic iron oxide nanoparticles (SPIONs) have attracted increased attention, which show different effects on red blood cell, plasma, platelet, C3 complement and vascular endothelial cell.


Sign in / Sign up

Export Citation Format

Share Document