Proteomic analysis reveals that Xbp1s promotes hypoxic pulmonary hypertension through the p‐JNK MAPK pathway

Author(s):  
Hongxia Jiang ◽  
Yang Niu ◽  
Yuanzhou He ◽  
Xiaochen Li ◽  
Yongjian Xu ◽  
...  
2021 ◽  
pp. 111395
Author(s):  
Benjamin D. McNair ◽  
Jacob A. Schlatter ◽  
Ross F. Cook ◽  
Musharraf Yusifova ◽  
Danielle R. Bruns

2018 ◽  
Vol 197 (7) ◽  
pp. 952-955 ◽  
Author(s):  
Soban Umar ◽  
Christine M. Cunningham ◽  
Yuichiro Itoh ◽  
Shayan Moazeni ◽  
Mylene Vaillancourt ◽  
...  

1993 ◽  
Vol 75 (4) ◽  
pp. 1748-1757 ◽  
Author(s):  
V. Hampl ◽  
S. L. Archer ◽  
D. P. Nelson ◽  
E. K. Weir

It has been suggested that chronic hypoxic pulmonary hypertension results from chronic hypoxic inhibition of endothelium-derived relaxing factor (EDRF) synthesis. We tested this hypothesis by studying whether chronic EDRF inhibition by N omega-nitro-L-arginine methyl ester (L-NAME) would induce pulmonary hypertension similar to that found in chronic hypoxia. L-NAME (1.85 mM) was given for 3 wk in drinking water to rats living in normoxia or hypoxia. Unlike chronic hypoxia, chronic L-NAME treatment did not increase pulmonary arterial pressure. Cardiac output was reduced and mean systemic arterial pressure was increased by chronic L-NAME treatment. The vascular pressure-flow relationship in isolated lungs was shifted toward higher pressures by chronic hypoxia and, to a lesser degree, by L-NAME intake. In isolated lungs, vasoconstriction in response to angiotensin II and acute hypoxia and vasodilation in response to sodium nitroprusside were increased by chronic L-NAME treatment in normoxia and chronic hypoxia. Chronic hypoxia, but not L-NAME, induced hypertensive pulmonary vascular remodeling. Chronic supplementation with the EDRF precursor L-arginine did not have any significant effect on chronic hypoxic pulmonary hypertension. We conclude that the chronic EDRF deficiency state, induced by L-NAME, does not mimic chronic hypoxic pulmonary hypertension in our model. In addition, EDRF proved to be less important for basal tone regulation in the pulmonary than in the systemic circulation.


2015 ◽  
Vol 308 (3) ◽  
pp. L229-L252 ◽  
Author(s):  
Steven C. Pugliese ◽  
Jens M. Poth ◽  
Mehdi A. Fini ◽  
Andrea Olschewski ◽  
Karim C. El Kasmi ◽  
...  

Hypoxic pulmonary hypertension (PH) comprises a heterogeneous group of diseases sharing the common feature of chronic hypoxia-induced pulmonary vascular remodeling. The disease is usually characterized by mild to moderate pulmonary vascular remodeling that is largely thought to be reversible compared with the progressive irreversible disease seen in World Health Organization (WHO) group I disease. However, in these patients, the presence of PH significantly worsens morbidity and mortality. In addition, a small subset of patients with hypoxic PH develop “out-of-proportion” severe pulmonary hypertension characterized by pulmonary vascular remodeling that is irreversible and similar to that in WHO group I disease. In all cases of hypoxia-related vascular remodeling and PH, inflammation, particularly persistent inflammation, is thought to play a role. This review focuses on the effects of hypoxia on pulmonary vascular cells and the signaling pathways involved in the initiation and perpetuation of vascular inflammation, especially as they relate to vascular remodeling and transition to chronic irreversible PH. We hypothesize that the combination of hypoxia and local tissue factors/cytokines (“second hit”) antagonizes tissue homeostatic cellular interactions between mesenchymal cells (fibroblasts and/or smooth muscle cells) and macrophages and arrests these cells in an epigenetically locked and permanently activated proremodeling and proinflammatory phenotype. This aberrant cellular cross-talk between mesenchymal cells and macrophages promotes transition to chronic nonresolving inflammation and vascular remodeling, perpetuating PH. A better understanding of these signaling pathways may lead to the development of specific therapeutic targets, as none are currently available for WHO group III disease.


2017 ◽  
Vol 198 (12) ◽  
pp. 4802-4812 ◽  
Author(s):  
Steven C. Pugliese ◽  
Sushil Kumar ◽  
William J. Janssen ◽  
Brian B. Graham ◽  
Maria G. Frid ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document