scholarly journals Effects of hormonal changes on sarcopenia in chronic kidney disease: where are we now and what can we do?

Author(s):  
Ozkan Gungor ◽  
Sena Ulu ◽  
Nuri Baris Hasbal ◽  
Stefan D. Anker ◽  
Kamyar Kalantar‐Zadeh
Nutrients ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1364 ◽  
Author(s):  
Elizabeth Stremke ◽  
Kathleen Hill Gallant

Chronic kidney disease (CKD) affects approximately 10% of adults worldwide. Dysregulation of phosphorus homeostasis which occurs in CKD leads to development of CKD-Mineral Bone Disorder (CKD-MBD) and contributes to increased morbidity and mortality in these patients. Phosphorus is regulated by multiple hormones (parathyroid hormone (PTH), 1,25-dihyxdroxyvitamin D (1,25D), and fibroblast growth factor 23 (FGF23)) and tissues (kidney, intestine, parathyroid glands, and bone) to maintain homeostasis. In health, the kidneys are the major site of regulation for phosphorus homeostasis. However, as kidney function declines, the ability of the kidneys to adequately excrete phosphorus is reduced. The hormonal changes that occur with CKD would suggest that the intestine should compensate for impaired renal phosphorus excretion by reducing fractional intestinal phosphorus absorption. However, limited studies in CKD animal models and patients with CKD suggest that there may be a break in this homeostatic response where the intestine fails to compensate. As many existing therapies for phosphate management in CKD are aimed at reducing absolute intestinal phosphorus absorption, better understanding of the factors that influence fractional and absolute absorption, the mechanism by which intestinal phosphate absorption occurs, and how CKD modifies these is a much-needed area of study.


Author(s):  
Jiwoon Kim ◽  
Ji Sun Nam ◽  
Heejung Kim ◽  
Hye Sun Lee ◽  
Jung Eun Lee

Abstract. Background/Aims: Trials on the effects of cholecalciferol supplementation in type 2 diabetes with chronic kidney disease patients were underexplored. Therefore, the aim of this study was to investigate the effects of two different doses of vitamin D supplementation on serum 25-hydroxyvitamin D [25(OH)D] concentrations and metabolic parameters in vitamin D-deficient Korean diabetes patients with chronic kidney disease. Methods: 92 patients completed this study: the placebo group (A, n = 33), the oral cholecalciferol 1,000 IU/day group (B, n = 34), or the single 200,000 IU injection group (C, n = 25, equivalent to 2,000 IU/day). 52% of the patients had less than 60 mL/min/1.73m2 of glomerular filtration rates. Laboratory test and pulse wave velocity were performed before and after supplementation. Results: After 12 weeks, serum 25(OH)D concentrations of the patients who received vitamin D supplementation were significantly increased (A, -2.4 ± 1.2 ng/mL vs. B, 10.7 ± 1.2 ng/mL vs. C, 14.6 ± 1.7 ng/mL; p < 0.001). In addition, the lipid profiles in the vitamin D injection group (C) showed a significant decrease in triglyceride and a rise in HDL cholesterol. However, the other parameters showed no differences. Conclusions: Our data indicated that two different doses and routes of vitamin D administration significantly and safely increased serum 25(OH)D concentrations in vitamin D-deficient diabetes patients with comorbid chronic kidney disease. In the group that received the higher vitamin D dose, the lipid profiles showed significant improvement, but there were no beneficial effects on other metabolic parameters.


VASA ◽  
2012 ◽  
Vol 41 (3) ◽  
pp. 159-160
Author(s):  
Espinola-Klein ◽  
F. Dopheide ◽  
Gori

Sign in / Sign up

Export Citation Format

Share Document