scholarly journals Retrospective Camera‐Based Respiratory Gating in Clinical Whole‐Heart 4D Flow MRI

Author(s):  
Lukas M. Gottwald ◽  
Carmen P.S. Blanken ◽  
João Tourais ◽  
Jouke Smink ◽  
R. Nils Planken ◽  
...  
2018 ◽  
Vol 60 (3) ◽  
pp. 327-337 ◽  
Author(s):  
Jelena Bock ◽  
Johannes Töger ◽  
Sebastian Bidhult ◽  
Karin Markenroth Bloch ◽  
Per Arvidsson ◽  
...  

Background 4D-flow magnetic resonance imaging (MRI) is increasingly used. Purpose To validate 4D-flow sequences in phantom and in vivo, comparing volume flow and kinetic energy (KE) head-to-head, with and without respiratory gating. Material and Methods Achieva dStream (Philips Healthcare) and MAGNETOM Aera (Siemens Healthcare) 1.5-T scanners were used. Phantom validation measured pulsatile, three-dimensional flow with 4D-flow MRI and laser particle imaging velocimetry (PIV) as reference standard. Ten healthy participants underwent three cardiac MRI examinations each, consisting of cine-imaging, 2D-flow (aorta, pulmonary artery), and 2 × 2 accelerated 4D-flow with (Resp+) and without (Resp−) respiratory gating. Examinations were acquired consecutively on both scanners and one examination repeated within two weeks. Volume flow in the great vessels was compared between 2D- and 4D-flow. KE were calculated for all time phases and voxels in the left ventricle. Results Phantom results showed high accuracy and precision for both scanners. In vivo, higher accuracy and precision ( P < 0.001) was found for volume flow for the Aera prototype with Resp+ (–3.7 ± 10.4 mL, r = 0.89) compared to the Achieva product sequence (–17.8 ± 18.6 mL, r = 0.56). 4D-flow Resp− on Aera had somewhat larger bias (–9.3 ± 9.6 mL, r = 0.90) compared to Resp+ ( P = 0.005). KE measurements showed larger differences between scanners on the same day compared to the same scanner at different days. Conclusion Sequence-specific in vivo validation of 4D-flow is needed before clinical use. 4D-flow with the Aera prototype sequence with a clinically acceptable acquisition time (<10 min) showed acceptable bias in healthy controls to be considered for clinical use. Intra-individual KE comparisons should use the same sequence.


2020 ◽  
Vol 32 (1) ◽  
pp. 35
Author(s):  
Pietro Sergio ◽  
Antonio Miceli
Keyword(s):  
4D Flow ◽  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nanae Tsuchiya ◽  
Michinobu Nagao ◽  
Yumi Shiina ◽  
Shohei Miyazaki ◽  
Kei Inai ◽  
...  

AbstractWe used 4D-flow MRI to investigate circulation, an area integral of vorticity, in the main pulmonary artery (MPA) as a new hemodynamic parameter for assessing patients with a repaired Tetralogy of Fallot (TOF). We evaluated the relationship between circulation, right ventricular (RV) function and the pulmonary regurgitant fraction (PRF). Twenty patients with a repaired TOF underwent cardiac MRI. Flow-sensitive 3D-gradient sequences were used to obtain 4D-flow images. Vortex formation in the MPA was visualized, with short-axis and longitudinal vorticities calculated by software specialized for 4D flow. The RV indexed end-diastolic/end-systolic volumes (RVEDVi/RVESVi) and RV ejection fraction (RVEF) were measured by cine MRI. The PR fraction (PRF) and MPA area were measured by 2D phase-contrast MRI. Spearman ρ values were determined to assess the relationships between circulation, RV function, and PRF. Vortex formation in the MPA occurred in 15 of 20 patients (75%). The longitudinal circulation (11.7 ± 5.1 m2/s) was correlated with the RVEF (ρ = − 0.85, p = 0.0002), RVEDVi (ρ = 0.62, p = 0.03), and RVESVi (ρ = 0.76, p = 0.003) after adjusting for the MPA size. The short-axis circulation (9.4 ± 3.4 m2/s) in the proximal MPA was positively correlated with the MPA area (ρ = 0.61, p = 0.004). The relationships between the PRF and circulation or RV function were not significant. Increased longitudinal circulation in the MPA, as demonstrated by circulation analysis using 4D flow MRI, was related to RV dysfunction in patients with a repaired TOF.


2021 ◽  
pp. svn-2020-000636
Author(s):  
Miaoqi Zhang ◽  
Fei Peng ◽  
Xin Tong ◽  
Xin Feng ◽  
Yunduo Li ◽  
...  

Background and purposePrevious studies have reported about inflammation processes (IPs) that play important roles in aneurysm formation and rupture, which could be driven by blood flow. IPs can be identified using aneurysmal wall enhancement (AWE) on high-resolution black-blood MRI (BB-MRI) and blood flow haemodynamics can be demonstrated by four-dimensional-flow MRI (4D-flow MRI). Thus, this study investigated the associations between AWE and haemodynamics in unruptured intracranial aneurysms (IA) by combining 4D-flow MRI and high-resolution BB-MRI.Materials and methodsBetween April 2014 and October 2017, 48 patients with 49 unruptured IA who underwent both 4D-flow MRI and high-resolution BB-MRI were retrospectively included in this study. The haemodynamic parameters demonstrated using 4D-flow MRI were compared between different AWE patterns using the Kruskal-Wallis test and ordinal regression.ResultsThe results of Kruskal-Wallis test showed that the average wall shear stress in the IA (WSSavg-IA), maximum through-plane velocity in the adjacent parent artery, inflow jet patterns and the average vorticity in IA (vorticityavg-IA) were significantly associated with the AWE patterns. Ordinal regression analysis identified WSSavg-IA (p=0.002) and vorticityavg-IA (p=0.033) as independent predictors of AWE patterns.ConclusionA low WSS and low average vorticity were independently associated with a high AWE grade for IAs larger than 4 mm. Therefore, WSS and average vorticity could predict AWE and circumferential AWE.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pauline Hall Barrientos ◽  
Katrina Knight ◽  
Douglas Black ◽  
Alexander Vesey ◽  
Giles Roditi

AbstractThe most common cause of chronic mesenteric ischaemia is atherosclerosis which results in limitation of blood flow to the gastrointestinal tract. This pilot study aimed to evaluate 4D flow MRI as a potential tool for the analysis of blood flow changes post-prandial within the mesenteric vessels. The mesenteric vessels of twelve people were scanned; patients and healthy volunteers. A baseline MRI scan was performed after 6 h of fasting followed by a post-meal scan. Two 4D flow datasets were acquired, over the superior mesenteric artery (SMA) and the main portal venous vessels. Standard 2D time-resolved PC-MRI slices were also obtained across the aorta above the coeliac trunk, superior mesenteric vein, splenic vein and portal vein (PV). In the volunteer cohort there was a marked increase in blood flow post-meal within the PV (p = 0.028), not seen in the patient cohort (p = 0.116). Similarly, there were significant flow changes within the SMA of volunteers (p = 0.028) but not for the patient group (p = 0.116). Our pilot data has shown that there is a significant haemodynamic response to meal challenge in the PV and SMA in normal subjects compared to clinically apparent CMI patients. Therefore, the interrogation of mesenteric venous vessels exclusively is a feasible method to measure post-prandial flow changes in CMI patients.


Diagnostics ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 767
Author(s):  
Simon O. Haarbye ◽  
Michael B. Nielsen ◽  
Adam E. Hansen ◽  
Carsten A. Lauridsen

The aim of this systematic review is to provide an overview of the use of Four-Dimensional Magnetic Resonance Imaging of vector blood flow (4D Flow MRI) in the abdominal veins. This study was composed according to the PRISMA guidelines 2009. The literature search was conducted in MEDLINE, Cochrane Library, EMBASE, and Web of Science. Quality assessment of the included studies was performed using the QUADAS-2 tool. The initial search yielded 781 studies and 21 studies were included. All studies successfully applied 4D Flow MRI in abdominal veins. Four-Dimensional Flow MRI was capable of discerning between healthy subjects and patients with cirrhosis and/or portal hypertension. The visual quality and inter-observer agreement of 4D Flow MRI were rated as excellent and good to excellent, respectively, and the studies utilized several different MRI data sampling strategies. By applying spiral sampling with compressed sensing to 4D Flow MRI, the blood flow of several abdominal veins could be imaged simultaneously in 18–25 s, without a significant loss of visual quality. Four-Dimensional Flow MRI might be a useful alternative to Doppler sonography for the diagnosis of cirrhosis and portal hypertension. Further clinical studies need to establish consensus regarding MRI sampling strategies in patients and healthy subjects.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
David R. Rutkowski ◽  
Alejandro Roldán-Alzate ◽  
Kevin M. Johnson

AbstractBlood flow metrics obtained with four-dimensional (4D) flow phase contrast (PC) magnetic resonance imaging (MRI) can be of great value in clinical and experimental cerebrovascular analysis. However, limitations in both quantitative and qualitative analyses can result from errors inherent to PC MRI. One method that excels in creating low-error, physics-based, velocity fields is computational fluid dynamics (CFD). Augmentation of cerebral 4D flow MRI data with CFD-informed neural networks may provide a method to produce highly accurate physiological flow fields. In this preliminary study, the potential utility of such a method was demonstrated by using high resolution patient-specific CFD data to train a convolutional neural network, and then using the trained network to enhance MRI-derived velocity fields in cerebral blood vessel data sets. Through testing on simulated images, phantom data, and cerebrovascular 4D flow data from 20 patients, the trained network successfully de-noised flow images, decreased velocity error, and enhanced near-vessel-wall velocity quantification and visualization. Such image enhancement can improve experimental and clinical qualitative and quantitative cerebrovascular PC MRI analysis.


Sign in / Sign up

Export Citation Format

Share Document