Syndecan-3 and perlecan are differentially expressed by progenitors and mature oligodendrocytes and accumulate in the extracellular matrix

2002 ◽  
Vol 69 (4) ◽  
pp. 477-487 ◽  
Author(s):  
Susan Winkler ◽  
Richard C. Stahl ◽  
David J. Carey ◽  
Rashmi Bansal
2007 ◽  
Vol 44 (6) ◽  
pp. 444-459 ◽  
Author(s):  
Chrystelle Cario-Toumaniantz ◽  
Cédric Boularan ◽  
Leon J. Schurgers ◽  
Marie-Françoise Heymann ◽  
Martine Le Cunff ◽  
...  

2020 ◽  
Author(s):  
Zhengzhong Gu ◽  
Xiaohan Cui ◽  
Xudong Wang

Abstract Background: Prognostic prediction models have been developed to detect new biomarkers of gastric cancer (GC). The identification of new biomarkers could provide theoretical foundations for the application of molecular targeted therapy in advanced GC. The aim of this study was to construct a prognostic prediction model for stomach adenocarcinoma (STAD) based on The Cancer Genome Atlas (TCGA) database. Methods: First, we used the "limma" package to screen differentially expressed genes (DEGs) based on TCGA database. Gene ontology (GO) analysis was performed using the "ClusterProfiler" package. The interactions between proteins and the relationships between differentially expressed genes and clinical features were analyzed by protein-protein interaction (PPI) network analysis and weighted gene coexpression network analysis (WGCNA), respectively. Then, gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) were used to identify differentially enriched pathways. The GenVisR package and CIBERSORT were used to identify mutations and assess immune infiltration. Finally, the expression of COL3A1 in STAD tissues was verified by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blotting.Results: Six differentially expressed genes were screened out, namely, COL3A1, ADAMTS12, BGN, FNDC1, AEBP1 and HTRA3. The enrichment results showed that differentially expressed genes were involved in multiple pathways in STAD, such as those related to the extracellular matrix, extracellular structure organization, and extracellular matrix organization. The differentially expressed genes were related to immune infiltration via the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathways. The western blotting and RT-qPCR results suggested that COL3A1 was overexpressed in STAD tissues compared with normal tissues.Conclusion: COL3A1, ADAMTS12, BGN, FNDC1, AEBP1 and HTRA3 could play important roles in the tumorigenesis and progression of STAD via various pathways, including those involving the extracellular matrix, extracellular structure organization, and extracellular matrix organization. COL3A1, ADAMTS12, BGN, FNDC1, AEBP1, and HTRA3 act as oncogenes in most cancers and may be biomarkers. Additionally, the identification of COL3A1 as a candidate biomarker provides a direction for further research on the role of tumor immunity in gastric cancer.


2021 ◽  
Author(s):  
Hui Zhao ◽  
Pengjie Li ◽  
Junjian Li ◽  
Lian Duan ◽  
Yanzhu Jiao ◽  
...  

Abstract Background Thyroid carcinoma (THC) is very common, yet its pathogenesis and the key tumor marker genes remain unclear.Methods Gene expression datasets from the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas Project (TCGA) were used for gene differential expression analysis. Functional annotation analysis, Clinical prognosis analysis and Differential DNA methylation analysis were conducted on the differentially expressed genes (DEGs). Results Compared with induced pluripotent stem cells (iPSCs), 237 differentially expressed THC intersection genes derived from GEO and TCGA were obtained, of which 153 genes were closely related to clinicopathological features and prognostic effects. Biological function analysis indicated that most of these DEGs were involved in the proteinaceous extracellular matrix, epithelial-to-mesenchymal transition (EMT), and PI3K-Akt signaling pathway, resulting in effects on tumor invasion and metastasis. Finally, the results of differential methylation levels demonstrated that the high expression of 4 genes (CHI3L1, NFE2L3, S100A2, and LAMB3) was strongly correlated with the development of thyroid cancer.Conclusions Proteinaceous extracellular matrix, EMT, and PI3K-Akt signaling pathways were of great significance in the metastasis and invasion of THC. Genes such as CHI3L1, NFE2L3, S100A2, and LAMB3 were susceptible to THC.


2020 ◽  
Vol 2020 ◽  
pp. 1-23
Author(s):  
Xiangchou Yang ◽  
Liping Chen ◽  
Yuting Mao ◽  
Zijing Hu ◽  
Muqing He

The role of an extracellular matrix- (ECM-) receptor interaction signature has not been fully clarified in gastric cancer. This study performed comprehensive analyses on the differentially expressed ECM-related genes, clinicopathologic features, and prognostic application in gastric cancer. The differentially expressed genes between tumorous and matched normal tissues in The Cancer Genome Atlas (TCGA) and validation cohorts were identified by a paired t -test. Consensus clusters were built to find the correlation between clinicopathologic features and subclusters. Then, the least absolute shrinkage and selection operator (lasso) method was used to construct a risk score model. Correlation analyses were made to reveal the relation between risk score-stratified subgroups and clinicopathologic features or significant signatures. In TCGA (26 pairs) and validation cohort (134 pairs), 25 ECM-related genes were significantly highly expressed and 11 genes were downexpressed in gastric cancer. ECM-based subclusters were slightly related to clinicopathologic features. We constructed a risk score model = 0.081 ∗ log 2   CD 36 + 0.043 ∗ log 2   COL 5 A 2 + 0.001 ∗ log 2   ITGB 5 + 0.039 ∗ log 2   SDC 2 + 0.135 ∗ log 2   SV 2 B + 0.012 ∗ log 2   THBS 1 + 0.068 ∗ log 2   VTN + 0.023 ∗ log 2   VWF . The risk score model could well predict the outcome of patients with gastric cancer in both training ( n = 351 , HR: 1.807, 95% CI: 1.292-2.528, P = 0.00046 ) and validation ( n = 300 , HR: 1.866, 95% CI: 1.347-2.584, P = 0.00014 ) cohorts. Besides, risk score-based subgroups were associated with angiogenesis, cell adhesion molecules, complement and coagulation cascades, TGF-beta signaling, and mismatch repair-relevant signatures ( P < 0.0001 ). By univariate (1.845, 95% CI: 1.382-2.462, P < 0.001 ) and multivariate (1.756, 95% CI: 1.284-2.402, P < 0.001 ) analyses, we regarded the risk score as an independent risk factor in gastric cancer. Our findings revealed that ECM compositions became accomplices in the tumorigenesis, progression, and poor survival of gastric cancer.


2021 ◽  
Author(s):  
Qi Zhou ◽  
Xin Xiong ◽  
Min Tang ◽  
Yingqing Lei ◽  
Hongbin Lv

Abstract BackgroundDiabetic retinopathy (DR), a severe complication of diabetes mellitus (DM), is a global social and economic burden. However, the pathological mechanisms mediating DR are not well-understood. This study aimed to identify differentially methylated and differentially expressed hub genes (DMGs and DEGs, respectively) and associated signaling pathways, and to evaluate immune cell infiltration involved in DR. MethodsTwo publicly available datasets were downloaded from the Gene Expression Omnibus database. Transcriptome and epigenome microarray data and multi-component weighted gene coexpression network analysis (WGCNA) were utilized to determine hub genes within DR. One dataset was utilized to screen DEGs and to further explore their potential biological functions using functional annotation analysis. A protein-protein interaction network was constructed. Gene set enrichment and variation analyses (GSVA and GSEA, respectively) were utilized to identify the potential mechanisms mediating the function of hub genes in DR. Infiltrating immune cells were evaluated in one dataset using CIBERSORT. The Connectivity Map (CMap) database was used to predict potential therapeutic agents. ResultsIn total, 673 DEGs (151 upregulated and 522 downregulated genes) were detected. Gene expression was significantly enriched in the extracellular matrix and sensory organ development, extracellular matrix organization, and glial cell differentiation pathways. Through WGCNA, one module was found to be significantly related with DR (r=0.34, P =0.002), and 979 hub genes were identified. By comparing DMGs, DEGs, and genes in WGCNA, we identified eight hub genes in DR ( AKAP13, BOC, ACSS1, ARNT2, TGFB2, LHFPL2, GFPT2, TNFRSF1A ), which were significantly enriched in critical pathways involving coagulation, angiogenesis, TGF-β, and TNF-α-NF-κB signaling via GSVA and GSEA. Immune cell infiltration analysis revealed that activated natural killer cells, M0 macrophages, resting mast cells, and CD8 + T cells may be involved in DR. ARNT2, TGFB2, LHFPL2 , and AKAP13 expression were correlated with immune cell processes, and ZG-10, JNK-9L, chromomycin-a3, and calyculin were identified as potential drugs against DR. Finally, TNFRSF1A , GFPT2 , and LHFPL2 expression levels were consistent with the bioinformatic analysis. ConclusionsOur results are informative with respect to correlations between differentially methylated and expressed hub genes and immune cell infiltration in DR, providing new insight towards DR drug development and treatment.


Author(s):  
Christina J. Codden ◽  
Michael T. Chin

Hypertrophic Cardiomyopathy (HCM) is a common inherited disorder characterized by unexplained left ventricular hypertrophy, with or without left ventricular outflow tract (LVOT) obstruction. Single nuclei RNA-sequencing (snRNA-seq) of both obstructive and nonobstructive HCM patient samples have revealed alterations in communication between various cell types but a direct and integrated comparison between the two HCM phenotypes has not been reported. We performed a bioinformatic analysis of HCM snRNA-seq datasets from obstructive and nonobstructive patient samples to identify differentially expressed genes and distinctive patterns of intercellular communication. Differential gene expression analysis revealed 37 differentially expressed genes, predominantly in cardiomyocytes but also in other cell types, relevant to aging, muscle contraction, cell motility and the extracellular matrix. Intercellular communication was generally reduced in HCM, affecting the extracellular matrix, growth factor binding, integrin binding, PDGF binding and SMAD binding, but with increases in adenylate cyclase binding, calcium channel inhibitor activity, and serine-threonine kinase activity in nonobstructive HCM. Increases in neuron to leukocyte and dendritic cell communication, in fibroblast to leukocyte and dendritic cell communication and in endothelial cell communication to other cell types, largely through changes in expression of integrin-b1 and its cognate ligands, were also noted. These findings indicate both common and distinct physiological mechanisms affecting the pathogenesis of obstructive and nonobstructive HCM and provide opportunities for personalized management of different HCM phenotypes.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Jane de Oliveira Peixoto ◽  
Igor Ricardo Savoldi ◽  
Adriana Mércia Guaratini Ibelli ◽  
Maurício Egídio Cantão ◽  
Fátima Regina Ferreira Jaenisch ◽  
...  

Abstract Background The proximal femoral head separation (FHS) or epiphysiolysis is a prevalent disorder affecting the chicken femur epiphysis, being considered a risk factor to infection which can cause bacterial chondronecrosis with osteomyelitis in broilers. To identify the genetic mechanisms involved in epiphysiolysis, differentially expressed (DE) genes in the femur of normal and FHS-affected broilers were identified using RNA-Seq technology. Femoral growth plate (GP) samples from 35-day-old commercial male broilers were collected from 4 healthy and 4 FHS-affected broilers. Sequencing was performed using an Illumina paired-end protocol. Differentially expressed genes were obtained using the edgeR package based on the False Discovery Rate (FDR < 0.05). Results Approximately 16 million reads/sample were generated with 2 × 100 bp paired-end reads. After data quality control, approximately 12 million reads/sample were mapped to the reference chicken genome (Galgal5). A total of 12,645 genes were expressed in the femur GP. Out of those, 314 were DE between groups, being 154 upregulated and 160 downregulated in FHS-affected broilers. In the functional analyses, several biological processes (BP) were overrepresented. Among them, those related to cell adhesion, extracellular matrix (ECM), bone development, blood circulation and lipid metabolism, which are more related to chicken growth, are possibly involved with the onset of FHS. On the other hand, BP associated to apoptosis or cell death and immune response, which were also found in our study, could be related to the consequence of the FHS. Conclusions Genes with potential role in the epiphysiolysis were identified through the femur head transcriptome analysis, providing a better understanding of the mechanisms that regulate bone development in fast-growing chickens. In this study, we highlighted the importance of cell adhesion and extracellular matrix related genes in triggering FHS. Furthermore, we have shown new insights on the involvement of lipidemia and immune response/inflammation with FHS in broilers. Understanding the changes in the GP transcriptome might support breeding strategies to address poultry robustness and to obtain more resilient broilers.


2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Yiting Tian ◽  
Yang Xing ◽  
Zheng Zhang ◽  
Rui Peng ◽  
Luyu Zhang ◽  
...  

Gastric cancer (GC) is one of the most common malignancies in the world, with morbidity and mortality ranking second among all cancers. Accumulating evidences indicate that circular RNAs (circRNAs) are closely correlated with tumorigenesis. However, the mechanisms of circRNAs still remain unclear. This study is aimed at determining hub genes and circRNAs and analyzing their potential biological functions in GC. Expression profiles of mRNAs and circRNAs were downloaded from the Gene Expression Omnibus (GEO) data sets of GC and paracancer tissues. Differentially expressed genes (DEGs) and differentially expressed circRNAs (DE-circRNAs) were identified. The target miRNAs of DE-circRNAs and the bidirectional interaction between target miRNAs and DEGs were predicted. Functional analysis was performed, and the protein-protein interaction (PPI) network and the circRNA-miRNA-mRNA network were established. A total of 456 DEGs and 2 DE-circRNAs were identified with 3 mRNA expression profiles and 2 circRNA expression profiles. GO analysis indicated that DEGs were mainly enriched in extracellular matrix and cell adhesion, and KEGG confirmed that DEGs were mainly associated with focal adhesion, the PI3K-Akt signaling pathway, extracellular matrix- (ECM)- receptor interaction, and gastric acid secretion. 15 hub DEGs (BGN, COL1A1, COL1A2, FBN1, FN1, SPARC, SPP1, TIMP1, UBE2C, CCNB1, CD44, CXCL8, COL3A1, COL5A2, and THBS1) were identified from the PPI network. Furthermore, the survival analysis indicate that GC patients with a high expression of the following 9 hub DEGs, namely, BGN, COL1A1, COL1A2, FBN1, FN1, SPARC, SPP1, TIMP1, and UBE2C, had significantly worse overall survival. The circRNA-miRNA-mRNA network was constructed based on 1 circRNA, 15 miRNAs, and 45 DEGs. In addition, the 45 DEGs included 5 hub DEGs. These results suggested that hub DEGs and circRNAs could be implicated in the pathogenesis and development of GC. Our findings provide novel evidence on the circRNA-miRNA-mRNA network and lay the foundation for future research of circRNAs in GC.


Author(s):  
Jan M. Leerink ◽  
Mabel van de Ruit ◽  
Elizabeth A.M. Feijen ◽  
Leontien C.M. Kremer ◽  
Annelies M.C. Mavinkurve-Groothuis ◽  
...  

AbstractAs in other cardiomyopathies, extracellular matrix (ECM) remodeling plays an important role in anthracycline-induced cardiomyopathy. To understand the pattern and timing of ECM remodeling pathways, we conducted a systematic review in which we describe protein and mRNA markers for ECM remodeling that are differentially expressed in the hearts of animals with anthracycline-induced cardiomyopathy. We included 68 studies in mice, rats, rabbits, and pigs with follow-up of 0.1–8.2 human equivalent years after anthracycline administration. Using meta-analysis, we found 29 proteins and 11 mRNAs that were differentially expressed in anthracycline-induced cardiomyopathy compared to controls. Collagens, matrix metalloproteinases (MMPs), inflammation markers, transforming growth factor ß signaling markers, and markers for cardiac hypertrophy were upregulated, whereas the protein kinase B (AKT) pro-survival pathway was downregulated. Their expression patterns over time from single time point studies were studied with meta-regression using human equivalent years as the time scale. Connective tissue growth factor showed an early peak in expression but remained upregulated at all studied time points. Brain natriuretic peptide (BNP) and MMP9 protein levels increased in studies with longer follow-up. Significant associations were found for higher atrial natriuretic peptide with interstitial fibrosis and for higher BNP and MMP2 protein levels with left ventricular systolic function.


2020 ◽  
Vol 9 (3) ◽  
pp. 90-98 ◽  
Author(s):  
Haitao Chen ◽  
Liaobin Chen

Aims This study aimed to uncover the hub long non-coding RNAs (lncRNAs) differentially expressed in osteoarthritis (OA) cartilage using an integrated analysis of the competing endogenous RNA (ceRNA) network and co-expression network. Methods Expression profiles data of ten OA and ten normal tissues of human knee cartilage were obtained from the Gene Expression Omnibus (GEO) database (GSE114007). The differentially expressed messenger RNAs (DEmRNAs) and lncRNAs (DElncRNAs) were identified using the edgeR package. We integrated human microRNA (miRNA)-lncRNA/mRNA interactions with DElncRNA/DEmRNA expression profiles to construct a ceRNA network. Likewise, lncRNA and mRNA expression profiles were used to build a co-expression network with the WGCNA package. Potential hub lncRNAs were identified based on an integrated analysis of the ceRNA network and co-expression network. StarBase and Multi Experiment Matrix databases were used to verify the lncRNAs. Results We detected 1,212 DEmRNAs and 49 DElncRNAs in OA and normal knee cartilage. A total of 75 dysregulated lncRNA-miRNA interactions and 711 dysregulated miRNA-mRNA interactions were obtained in the ceRNA network, including ten DElncRNAs, 69 miRNAs, and 72 DEmRNAs. Similarly, 1,330 dysregulated lncRNA-mRNA interactions were used to construct the co-expression network, which included ten lncRNAs and 407 mRNAs. We finally identified seven hub lncRNAs, named MIR210HG, HCP5, LINC00313, LINC00654, LINC00839, TBC1D3P1-DHX40P1, and ISM1-AS1. Subsequent enrichment analysis elucidated that these lncRNAs regulated extracellular matrix organization and enriched in osteoclast differentiation, the FoxO signalling pathway, and the tumour necrosis factor (TNF) signalling pathway in the development of OA. Conclusion The integrated analysis of the ceRNA network and co-expression network identified seven hub lncRNAs associated with OA. These lncRNAs may regulate extracellular matrix changes and chondrocyte homeostasis in OA progress. Cite this article: Bone Joint Res. 2020;9(3):90–98.


Sign in / Sign up

Export Citation Format

Share Document