Characteristics of summer extreme precipitation in the Huai River basin and their relationship with East Asia summer monsoon during 1960-2014

2018 ◽  
Vol 39 (3) ◽  
pp. 1555-1570 ◽  
Author(s):  
Yixing Yin ◽  
Haishan Chen ◽  
Panmao Zhai ◽  
Chong-Yu Xu ◽  
Hedi Ma
2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Yixing Yin ◽  
Xin Pan ◽  
Xiuqin Yang ◽  
Xiaojun Wang ◽  
Guojie Wang ◽  
...  

Floods and droughts are more closely related to the extreme precipitation over longer periods of time. The spatial and temporal changes and frequency analysis of 5-day and 10-day extreme precipitations (PX5D and PX10D) in the Huai River basin (HRB) are investigated by means of correlation analysis, trend and abrupt change analysis, EOF analysis, and hydrological frequency analysis based on the daily precipitation data from 1960 to 2014. The results indicate (1) PX5D and PX10D indices have a weak upward trend in HRB, and the weak upward trend may be due to the significant downward trend in the 21st century, (2) the multiday (5-day and 10-day) extreme precipitation is closely associated with flood/drought disasters in the HRB, and (3) for stations of nonstationary changes with significant upward trend after the abrupt change, if the whole extreme precipitation series are used for frequency analysis, the risk of future floods will be underestimated, and this effect is more pronounced for longer return periods.


Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2390 ◽  
Author(s):  
Sun ◽  
Zhang ◽  
Yao ◽  
Wen

: Hydrological droughts were characterized using the run-length theory and the AIC (Akaike information criterion) techniques were accepted to evaluate the modeling performance of nine probability functions. In addition, the copula functions were used to describe joint probability behaviors of drought duration and drought severity for the major tributaries of the Huai River Basin (HRB) which is located in the transitional zone between humid and semi-humid climates. The results indicated that: (1) the frequency of hydrological droughts in the upper HRB is higher than that in the central HRB, while the duration of the hydrological drought is in reverse spatial pattern. The drought frequency across the Shiguan River along the south bank of the HRB is higher than the other two tributaries; (2) generalized Pareto distribution is the appropriate distribution function with the best performance in modelling the drought duration over the HRB; while the Generalized Extreme Value (GEV) distribution can effectively describe the probabilistic properties of the drought severity. Joe copula and Tawn copula functions are the best choices and were used in this study. Given return periods of droughts of <30 years, the droughts in the upper HRB are the longest, and the shortest are in the central HRB; (3) the frequency of droughts along the mainstream of the HRB is higher than tributaries of the HRB. However, concurrence probability of droughts along the mainstream of the HRB is lower than the tributaries of the HRB. The drought resistance capacity of HRB has been significantly improved, effectively reducing the impact of hydrological drought on crops after 2010.


2016 ◽  
Vol 17 (1) ◽  
pp. 229-237 ◽  
Author(s):  
Yu Meng ◽  
Xiang Zhang ◽  
Dunxian She ◽  
Junchai Wang ◽  
Shaofei Wu

A comprehensive indicator of water use efficiency (WUE) to promote coordinated development between socio-economic and environmental systems was developed. A comprehensive consideration of the social, economic and environmental benefits of water was made in the evaluation index system of WUE and the projection pursuit model combined with chaotic particle swarm optimization was adopted to calculate the comprehensive indicator of WUE. The Huai River Basin (HRB) was selected as a case study area. The temporal change of WUE showed that the annual WUE of the HRB from 2007 to 2013 increased obviously because of the enhanced emphasis on environmental protection by the government. The spatial results showed that the spatial WUE of each province in 2013 was significantly higher than in 2007. In 2013, Anhui with the lowest WUE was selected as representative to reveal the problems of water use in the HRB. The main reasons were that the government paid more attention to the high water consumption industries and ignored the small-scale water users, and wastewater treatment was still weak in the HRB. The research can provide the foundation for improving WUE and solving the problem of water shortages.


2017 ◽  
Vol 49 (5) ◽  
pp. 1452-1466 ◽  
Author(s):  
Liang Zhang ◽  
Ruiqiang Yuan ◽  
Xianfang Song ◽  
Jun Xia

Abstract Oxygen (δ18O) and hydrogen (δD) stable isotopes in the surface waters of the Huai River basin were analyzed in this study. Results indicated the northern waters had higher δ18O and δD than the southern waters, the water δ18O and δD increased along the water flow directions. These variations mostly resulted from the spatial differences of precipitation and evaporation. Comparing with published different continents' river water δ18O data, this study suggests that evaporation effect is a more plausible interpretation than altitude effect as the cause of δ18O increasing from upriver to downriver waters. This region's local surface water line (LSWL, δD = 5.36δ18O − 18.39; r2 = 0.84) represents one of the first presented LSWLs in eastern China. The correlation between d-excess and δ18O demonstrates this region is dominated by the Pacific oceanic moisture masses in summer. Comparing the various LSWLs from eastern China and eastern United States river waters, this study proposes a hypothesis that the water LSWLs slopes of lower latitude regions may be less than those of higher latitude regions within similar topographic areas. This hypothesis may be tested in other geographically comparable coupled areas in the world if corresponding large-scale data can be found.


Sign in / Sign up

Export Citation Format

Share Document