Projected changes in extreme precipitation over eastern Asia in the 21st century

2019 ◽  
Vol 40 (8) ◽  
pp. 3701-3713
Author(s):  
Chenghai Wang ◽  
Danyang Cui ◽  
Jerasorn Santisirisomboon
2020 ◽  
Vol 82 ◽  
pp. 75-95
Author(s):  
M Darand

Climate extremes have large impacts on human societies and natural ecosystems. Projection of changes in climate extremes is very important for long-term planning. The current study investigated future changes in extreme precipitation events over Iran based on 18 CMIP5 models for the period 2006-2100. National gridded data from the Asfazari database were used to evaluate climate model simulation. Results indicate that models with higher spatial resolution (CCSM4 and MRI-CGCM3) perform better than those with lower resolution in capturing the spatial features of extreme precipitation events. Bias correction was applied to the models and the projected changes were assessed with the nonparametric modified Mann-Kendal trend test and Sen slope estimator at a 95% confidence level. Annual total precipitation (PRPCTOT) and rainy days (RD) were projected to decrease but the intensity and frequency of precipitation extremes were predicted to increase significantly. The projected decreases were larger in northwestern parts than other regions, with PRPCTOT decreasing by 18 to 22 mm decade-1 and RD by 4 to 4.8 d decade-1. Although there were discrepancies in rates between the models, extreme precipitation events over Iran were generally projected to increase. An increase in consecutive dry days (CDD) was predicted for most regions by the end of the 21st century under RCP8.5, with the largest increase of 5 to 6.8 d decade-1 found for northwestern Iran. In eastern areas of Iran, where precipitation occurs extremely rarely, the number of days with daily precipitation exceeding 10 mm (R10) or even 20 mm (R20) were projected to increase significantly. In conclusion, these changes suggest an increased risk of flash floods in Iran from increased extreme precipitation under the RCP8.5 emission scenario.


PLoS Biology ◽  
2013 ◽  
Vol 11 (10) ◽  
pp. e1001682 ◽  
Author(s):  
Camilo Mora ◽  
Chih-Lin Wei ◽  
Audrey Rollo ◽  
Teresa Amaro ◽  
Amy R. Baco ◽  
...  

2019 ◽  
Vol 182 ◽  
pp. 103004 ◽  
Author(s):  
Alex Morrison ◽  
Gabriele Villarini ◽  
Wei Zhang ◽  
Enrico Scoccimarro

Author(s):  
Hiram Levy ◽  
M. Daniel Schwarzkopf ◽  
Larry Horowitz ◽  
V. Ramaswamy ◽  
K. L. Findell

2021 ◽  
Author(s):  
Josep Cos ◽  
Francisco J Doblas-Reyes ◽  
Martin Jury

<p>The Mediterranean has been identified as a climate change hot-spot due to increased warming trends and precipitation decline. Recently, CMIP6 was found to show a higher climate sensitivity than its predecessor CMIP5, potentially further exacerbating related impacts on the Mediterranean region.</p><p>To estimate the impacts of the ongoing climate change on the region, we compare projections of various CMIP5 and CMIP6 experiments and scenarios. In particular, we focus on summer and winter changes in temperature and precipitation for the 21st century under RCP2.6/SSP1-2.6, RCP4.5/SSP2-4.5 and RCP8.5/SSP5-8.5 as well as the high resolution HighResMIP experiments. Additionally, to give robust estimates of projected changes we apply a novel model weighting scheme, accounting for historical performance and inter-independence of the multi-member multi-model ensembles, using ERA5, JRA55 and WFDE5 as observational reference. </p><p>Our results indicate a significant and robust warming over the Mediterranean during the 21st century irrespective of the used ensemble and experiments. Nevertheless, the often attested amplified Mediterranean warming is only found for summer. The projected changes vary between the CMIP5 and CMIP6, with the latter projecting a stronger warming. For the high emission scenarios and without weighting, CMIP5 indicates a warming between 4 and 7.7ºC in summer and 2.7 and 5ºC in winter, while CMIP6 projects temperature increases between 5.6 and 9.2ºC in summer and 3.2 to 6.8ºC in winter until 2081-2100 in respect to 1985-2005. In contrast to temperature, precipitation changes show a higher level of uncertainty and spatial heterogeneity. However, for the high emission scenario, a robust decline in precipitation is projected for large parts of the Mediterranean during summer. First results applying the model weighting scheme indicate reductions in CMIP6 and increases in CMIP5 warming trends, thereby reducing differences between the two ensembles.</p>


2021 ◽  
Author(s):  
Martín Senande-Rivera ◽  
Gonzalo Miguez-Macho

<p>Extreme wildfire events associated with strong pyroconvection have gained the attention of the scientific community and the society in recent years. Strong convection in the fire plume can influence fire behaviour, as downdrafts can cause abrupt variations in surface wind direction and speed that can result in bursts of unexpected fire propagation. Climate change is expected to increase the length of the fire season and the extreme wildfire potential, so the risk of pyroconvection occurence might be also altered. Here, we analyse atmospheric stability and near-surface fire weather conditions in the Iberian Peninsula at the end of the 21st century to assess the projected changes in pyroconvective risk during favourable weather conditions for wildfire spread.  </p>


2021 ◽  
Vol 48 (5) ◽  
pp. 666-675
Author(s):  
O. N. Nasonova ◽  
Ye. M. Gusev ◽  
E. E. Kovalev ◽  
G. V. Ayzel ◽  
M. K. Chebanova

Sign in / Sign up

Export Citation Format

Share Document