Evaluation of Solution Oxygenation Requirements for Azonitrile-Based Oxidative Forced Degradation Studies of Pharmaceutical Compounds

2006 ◽  
Vol 95 (7) ◽  
pp. 1527-1539 ◽  
Author(s):  
Eric D. Nelson ◽  
Paul A. Harmon ◽  
Renee C. Szymanik ◽  
Martin G. Teresk ◽  
Li Li ◽  
...  
2012 ◽  
Vol 101 (6) ◽  
pp. 2109-2122 ◽  
Author(s):  
Zheng-zhi Wu ◽  
Matthew L. Thatcher ◽  
James K. Lundberg ◽  
Mark K. Ogawa ◽  
Cliffton B. Jacoby ◽  
...  

Author(s):  
PRATIK K. VORA ◽  
SURESH C AMETA ◽  
MRUNAL K SHIRSAT

2018 ◽  
Vol 6 (4) ◽  
pp. 21-29
Author(s):  
Madhavi K Meher ◽  
Charushila Bhangale ◽  
Ramdas Dholas ◽  
Vandana Aher Prashant ◽  
Rohan Pawar

The objective of this work is to develop a rapid, precise, accurate and sensitive revere phase liquid chromatographic method and Forced degradation studies for the estimation of Lansoprazole. The chromatographic method was standardized for Lansoprazole using Shimadzu HPLC model reverse phase analytical Inspire grace C18 column (250 mm x 4.5 mm, 5mm particle size) with PC-3000-M Reciprocating Pump (40 Mpa) and UV-3000-M Detector, at 285nm and flow rate of 0.8 ml/min. The mobile phase consists of 80:20 Methanol: water. The linearity of proposed method was investigated in the range of 10-50 µm/ml (R2 = 0.999) of Lansoprazole. The limit of detection (LOD) was found to be 0.12 mm/ml. The limit of quantification (LOQ) was found to be 0.36 mg/ml. The retention time of Lansoprazole found to be 5.4 min. The method was statistically validated and % RSD was found to be less than 2 indicating high degree of accuracy and precision. Hence proposed method can be successfully applied for the estimation of Lansoprazole in further studies. Keywords: Lansoprazole, RP-HPLC, Chromatogram, validation, estimation.


2017 ◽  
Vol 9 (5) ◽  
pp. 121 ◽  
Author(s):  
Hemant K. Jain ◽  
Archana A. Gunjal

Objective: To develop an accurate, simple, precise and specific stability indicating RP-HPLC method for estimation of dimethyl fumarate in bulk and capsules.Methods: An Inertsil ODS (150x4.6 mm, 5µ) column and a mobile phase containing acetonitrile: potassium dihydrogen phosphate buffer pH 6.8 (50:50% v/v) was used for this study. The flow rate was maintained at 1.0 ml/min; column temperature was fixed at 35 °C and UV detection was carried out at 210 nm. The forced degradation studies were performed and method was validated with as per ICH guidelines.Results: The retention time of dimethyl fumarate was found to be 3.3±0.02 min. The value of correlation coefficient between peak area and concentration was found to be 0.9993. The mean percent recovery of dimethyl fumarate in capsules was found in the range of 99.65 to 101.64%. The results of forced degradation studies indicated that the drug was found to be stable in basic, oxidative and thermal conditions while degraded in acidic conditions.Conclusion: It can be conducted from results that the developed HPLC method is simple, accurate, precise and specific. Results of stress testing study revealed that the method is stability indicating. Thus, this method can be used for routine analysis of dimethyl fumarate capsules and check their stability.  


Author(s):  
T Hemant Kumar ◽  
CH. ASHA ◽  
D. GOWRI SANKAR

Objective: To develop and validate a simple, specific, accurate, precise and sensitive reverse phase high performance liquid chromatographic (RP-HPLC) method with forced degradation studies for the simultaneous estimation of amlodipine besylate and irbesartan in the pharmaceutical formulation. Methods: The chromatographic separation of the two drugs were achieved using Enable C 18G column (250 ×4.6 mm; 5 µm) in isocratic mode with mobile phase consisting of sodium acetate buffer (pH 4.0) and acetonitrile (30:70, % v/v) with a flow rate of 0.6 ml/min. Ultraviolet(UV) detection was carried out at 238 nm. The proposed method was validated for linearity, range, accuracy, precision, robustness, limit of detection (LOD) and limit of quantification (LOQ). The tablet formulation was subjected to stress conditions of degradation including acidic, alkaline, oxidative, thermal and photolysis. Results: The retention time for amlodipine besylate and irbesartan were found to be 5.512 and 6.321 min respectively. Linearity was observed over a concentration range 4-32 µg/ml for amlodipine besylate (r2 =0.9999) and 10-70 µg/ml for Irbesartan (r2 =0.9998). The % relative standard deviation (RSD) for Intraday and Interday precision was found to be 0.436 and 0.699 for amlodipine besylate and 0.435 and 0.30 for irbesartan. Amlodipine besylate shown stability towards acidic and thermal whereas in basic, oxidative and photolytic it shown less stability in which it degraded to more extent. Irbesartan shown stability towards thermal conditions whereas in remaining conditions it degrades to more extent especially in oxidative conditions. Conclusion: The developed reverse phase high performance liquid chromatographic (RP-HPLC) method was also found to be simple, precise and sensitive for the simultaneous determination of amlodipine besylate and irbesartan in the tablet dosage form.


2013 ◽  
Vol 19 (4) ◽  
pp. 471-484
Author(s):  
Pritam Jain ◽  
Miketa Patel ◽  
Amar Chaudhari ◽  
Sanjay Surana

A simple, specific, accurate and precise reverse phase high pressure liquid chromatographic method has been developed for the simultaneous determination of Paracetamol and Lornoxicam from tablets and to characterize degradation products of Lornoxicam by reverse phase C18 column (Inertsil ODS 3V C-18, 250 x 4.6 mm, 5 ?). The sample was analyzed using Buffer (0.02504 Molar): Methanol in the ratio of 45:55, as a mobile phase at a flow rate of 1.5 mL/min and detection at 290 nm. The retention time for Paracetamol and Lornoxicam was found to be 2.45 and 9.40 min respectively. The method can be used for estimation of combination of these drugs in tablets. The method was validated as per ICH guidelines. The linearity of developed method was achieved in the range of 249.09 - 747.29 ?g/mL (r2=0.9999) for Paracetamol and 4.0125 - 12.0375 ?g/mL (r2=0.9999) for Lornoxicam. Recoveries from tablets were between 98 and 102%. The method was validated with respect to linearity, accuracy, precision, robustness and forced degradation studies which further proved the stability-indicating power. During the forced degradation studies lornoxicam was observed to be labile to alkaline hydrolytic stress and oxidative stress (in the solution form). However, it was stable to the acid hydrolytic, photolytic and thermal stress (in both solid and solution form). The degraded products formed were investigated by electrospray ionization (ESI) time-of-flight mass spectrometry, NMR and IR spectroscopy. A possible degradation pathway was outlined based on the results. The method was found to be sensitive with a detection limit of 0.193 ?g/ml, 2.768 ?g/ml and a quantitation limit of 0.638 ?g/ml, 9.137 ?g/ml for lornoxicam and paracetamol, respectively. Due to these attributes, the proposed method could be used for routine quality control analysis of these drugs in combined dosage forms.


2016 ◽  
Vol 28 (10) ◽  
pp. 2181-2187 ◽  
Author(s):  
V.E. Pakade ◽  
M. Lesaoana ◽  
N.T. Tavengwa

Viruses ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 725 ◽  
Author(s):  
Loewe ◽  
Häussler ◽  
Grein ◽  
Dieken ◽  
Weidner ◽  
...  

Oncolytic measles virus (MV) is a promising treatment for cancer but titers of up to 1011 infectious particles per dose are needed for therapeutic efficacy, which requires an efficient, robust, and scalable production process. MV is highly sensitive to process conditions, and a substantial fraction of the virus is lost during current purification processes. We therefore conducted forced degradation studies under thermal, pH, chemical, and mechanical stress to determine critical process parameters. We found that MV remained stable following up to five freeze–thaw cycles, but was inactivated during short-term incubation (< 2 h) at temperatures exceeding 35 °C. The infectivity of MV declined at pH < 7, but was not influenced by different buffer systems or the ionic strength/osmolality, except high concentrations of CaCl2 and MgSO4. We observed low shear sensitivity (dependent on the flow rate) caused by the use of a peristaltic pump. For tangential flow filtration, the highest recovery of MV was at a shear rate of ~5700 s−1. Our results confirm that the application of forced degradation studies is important to identify critical process parameters for MV purification. This will be helpful during the early stages of process development, ensuring the recovery of high titers of active MV particles after purification.


2019 ◽  
Vol 12 (1) ◽  
pp. 429
Author(s):  
Shubhangi V. Sutar ◽  
Veerendra. C. Yeligar ◽  
Shitalkumar S. Patil

2020 ◽  
Vol 54 (3) ◽  
pp. 790-797
Author(s):  
Shaikh Tanveer Kutubuddin ◽  
Shelke Sushil Suresh ◽  
Kakde Rajendra Baliram ◽  
Lalatsa Aikaterini

Sign in / Sign up

Export Citation Format

Share Document