Numerical solutions of wavelet neural networks for fractional differential equations

Author(s):  
Mingqiu Wu ◽  
Jinlei Zhang ◽  
Zhijie Huang ◽  
Xiang Li ◽  
Yumin Dong
2017 ◽  
Vol 9 (3) ◽  
pp. 667-679 ◽  
Author(s):  
Haidong Qu

AbstractIn this paper, we first apply cosine radial basis function neural networks to solve the fractional differential equations with initial value problems or boundary value problems. In the examples, we successfully obtained the numerical solutions for the fractional Riccati equations and fractional Langevin equations. The computer graphics and numerical solutions show that this method is very effective.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Haidong Qu ◽  
Xuan Liu

We present a new method for solving the fractional differential equations of initial value problems by using neural networks which are constructed from cosine basis functions with adjustable parameters. By training the neural networks repeatedly the numerical solutions for the fractional differential equations were obtained. Moreover, the technique is still applicable for the coupled differential equations of fractional order. The computer graphics and numerical solutions show that the proposed method is very effective.


Author(s):  
Najma Ahmed ◽  
Dumitru Vieru ◽  
Fiazud Din Zaman

A generalized mathematical model of the breast and ovarian cancer is developed by considering the fractional differential equations with Caputo time-fractional derivatives. The use of the fractional model shows that the time-evolution of the proliferating cell mass, the quiescent cell mass, and the proliferative function are significantly influenced by their history. Even if the classical model, based on the derivative of integer order has been studied in many papers, its analytical solutions are presented in order to make the comparison between the classical model and the fractional model. Using the finite difference method, numerical schemes to the Caputo derivative operator and Riemann-Liouville fractional integral operator are obtained. Numerical solutions to the fractional differential equations of the generalized mathematical model are determined for the chemotherapy scheme based on the function of "on-off" type. Numerical results, obtained with the Mathcad software, are discussed and presented in graphical illustrations. The presence of the fractional order of the time-derivative as a parameter of solutions gives important information regarding the proliferative function, therefore, could give the possible rules for more efficient chemotherapy.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Mohammed M. Matar ◽  
Esmail S. Abu Skhail

We study the Mittag-Leffler and class-K function stability of fractional differential equations with order α∈(1,2). We also investigate the comparison between two systems with Caputo and Riemann-Liouville derivatives. Two examples related to fractional-order Hopfield neural networks with constant external inputs and a marine protected area model are introduced to illustrate the applicability of stability results.


Open Physics ◽  
2016 ◽  
Vol 14 (1) ◽  
pp. 226-230 ◽  
Author(s):  
A. Bolandtalat ◽  
E. Babolian ◽  
H. Jafari

AbstractIn this paper, we have applied a numerical method based on Boubaker polynomials to obtain approximate numerical solutions of multi-order fractional differential equations. We obtain an operational matrix of fractional integration based on Boubaker polynomials. Using this operational matrix, the given problem is converted into a set of algebraic equations. Illustrative examples are are given to demonstrate the efficiency and simplicity of this technique.


Sign in / Sign up

Export Citation Format

Share Document