Quantification of uptake in pelvis F‐18 FLT PET‐CT images using a 3D localization and segmentation CNN

2022 ◽  
Author(s):  
Xiaofan Xiong ◽  
Brian J. Smith ◽  
Stephen A. Graves ◽  
John J. Sunderland ◽  
Michael M. Graham ◽  
...  
Keyword(s):  
Flt Pet ◽  
2019 ◽  
Vol 5 (suppl) ◽  
pp. 127-127
Author(s):  
QingLian Wen ◽  
ZhangQiang Xiang

127 Background: To determine the optimum conditions for diagnosis of nasopharyngeal carcinoma, we established VX2 rabbit model to delineate gross target volume (GTV) in different imaging methods. Methods:The orthotopic nasopharyngeal carcinoma (NPC) was established in sixteen New Zealand rabbits. After 7-days inoculation, the rabbits were examined by CT scanning and then sacrificed for pathological examination. To achieve the best delineation, different GTVs of CT, MRI, 18F-FDG PET/CT, and 18F-FLT PET/CT images were correlated with pathological GTV (GTVp). Results: We found 45% and 60% of the maximum standardized uptake value (SUVmax) as the optimal SUV threshold for the target volume of NPC in 18F-FDG PET/CT and 18F-FLT PET/CT images, respectively (GTVFDG45% and GTVFLT60%). Moreover, the GTVMRI and GTVCT were significantly higher than the GTVp ( P ≤ 0.05), while the GTVFDG45% and especially GTVFLT60% were similar to the GTVp ( R = 0.892 and R = 0.902, respectively; P ≤ 0.001). Conclusions: Notably, the results suggested that 18F-FLT PET/CT could reflect the tumor boundaries more accurately than 18F-FDG PET/CT, MRI and CT, which makes 18F-FLT PET-CT more advantageous for the clinical delineation of the target volume in NPC. Keywords: Nasopharyngeal carcinoma; Gross tumor volume; Magnetic resonance imaging, Computed tomography; 18F-FLT PET/CT; 18F-FDG PET/CT


2012 ◽  
Vol 103 ◽  
pp. S115
Author(s):  
S. Thureau ◽  
P. Chaumet-Riffaud ◽  
P. Fernandez ◽  
B. Bridji ◽  
C. Houzard ◽  
...  

2013 ◽  
Vol 54 (10) ◽  
pp. 1703-1709 ◽  
Author(s):  
N.-M. Cheng ◽  
Y.-H. Dean Fang ◽  
J. Tung-Chieh Chang ◽  
C.-G. Huang ◽  
D.-L. Tsan ◽  
...  

Author(s):  
Jieling Zheng ◽  
Huaning Chen ◽  
Kaixian Lin ◽  
Shaobo Yao ◽  
Weibing Miao
Keyword(s):  
Fdg Pet ◽  
Pet Ct ◽  
18F Fdg ◽  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yoichi Shimizu ◽  
Yukihiro Nakai ◽  
Hiroyuki Watanabe ◽  
Shimpei Iikuni ◽  
Masahiro Ono ◽  
...  

Abstract Background [18F]Fluoromisonidazole ([18F]FMISO) is a PET imaging probe widely used for the detection of hypoxia. We previously reported that [18F]FMISO is metabolized to the glutathione conjugate of the reduced form in hypoxic cells. In addition, we found that the [18F]FMISO uptake level varied depending on the cellular glutathione conjugation and excretion ability such as enzyme activity of glutathione-S-transferase and expression levels of multidrug resistance-associated protein 1 (MRP1, an efflux transporter), in addition to the cellular hypoxic state. In this study, we evaluated whether MRP1 activity affected [18F]FMISO PET imaging. Methods FaDu human pharyngeal squamous cell carcinoma cells were pretreated with MRP1 inhibitors (cyclosporine A, lapatinib, or MK-571) for 1 h, incubated with [18F]FMISO for 4 h under hypoxia, and their radioactivity was then measured. FaDu tumor-bearing mice were intravenously injected with [18F]FMISO, and PET/CT images were acquired at 4 h post-injection (1st PET scan). Two days later, the same mice were pretreated with MRP1 inhibitors (cyclosporine A, lapatinib, or MK-571) for 1 h, and PET/CT images were acquired (2nd PET scan). Results FaDu cells pretreated with MRP1 inhibitors exhibited significantly higher radioactivity than those without inhibitor treatment (cyclosporine A: 6.91 ± 0.27, lapatinib: 10.03 ± 0.47, MK-571: 10.15 ± 0.44%dose/mg protein, p < 0.01). In the in vivo PET study, the SUVmean ratio in tumors [calculated as after treatment (2nd PET scan)/before treatment of MRP1 inhibitors (1st PET scan)] of the mice treated with MRP1 inhibitors was significantly higher than those of control mice (cyclosporine A: 2.6 ± 0.7, lapatinib: 2.2 ± 0.7, MK-571: 2.2 ± 0.7, control: 1.2 ± 0.2, p < 0.05). Conclusion In this study, we revealed that MRP1 inhibitors increase [18F]FMISO accumulation in hypoxic cells. This suggests that [18F]FMISO-PET imaging is affected by MRP1 inhibitors independent of the hypoxic state.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Michał Wyrzykowski ◽  
Natalia Siminiak ◽  
Maciej Kaźmierczak ◽  
Marek Ruchała ◽  
Rafał Czepczyński

Sign in / Sign up

Export Citation Format

Share Document