Environmental cues of spawning migration into a confined wetland by Northern Pike and Common Carp in Lake Erie: identifying fine‐scale patterns

Author(s):  
Nathan Stott ◽  
Jeffrey Miner
Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1625 ◽  
Author(s):  
Shyam Thomas ◽  
Stephanie Melles ◽  
Satyendra Bhavsar

Bioaccumulation of mercury in sport fish is a complex process that varies in space and time. Both large-scale climatic as well as fine-scale environmental factors are drivers of these space-time variations. In this study, we avail a long-running monitoring program from Ontario, Canada to better understand spatiotemporal variations in fish mercury bioaccumulation at two distinct scales. Focusing on two common large-bodied sport fishes (Walleye and Northern Pike), the data were analyzed at fine- and broad-scales, where fine-scale implies variations in bioaccumulation at waterbody- and year-level and broad-scale captures variations across 3 latitudinal zones (~5° each) and eight time periods (~5-year each). A series of linear mixed-effects models (LMEMs) were employed to capture the spatial, temporal and spatiotemporal variations in mercury bioaccumulation. Fine-scale models were overall better fit than broad-scale models suggesting environmental factors operating at the waterbody-level and annual climatic conditions matter most. Moreover, for both scales, the space time interaction explained most of the variation. The random slopes from the best-fitting broad-scale model were used to define a bioaccumulation index that captures trends within a climate change context. The broad-scale trends suggests of multiple and potentially conflicting climate-driven mechanisms. Interestingly, broad-scale temporal trends showed contrasting bioaccumulation patterns—increasing in Northern Pike and decreasing in Walleye, thus suggesting species-specific ecological differences also matter. Overall, by taking a scale-specific approach, the study highlights the overwhelming influence of fine-scale variations and their interactions on mercury bioaccumulation; while at broad-scale the mercury bioaccumulation trends are summarized within a climate change context.


Wetlands ◽  
1999 ◽  
Vol 19 (4) ◽  
pp. 883-888 ◽  
Author(s):  
John R. P. French ◽  
Douglas A. Wilcox ◽  
S. Jerrine Nichols

2019 ◽  
Vol 146 (4) ◽  
pp. 2897-2897 ◽  
Author(s):  
Nicholas Flores Martin ◽  
Timothy G. Leighton ◽  
Paul R. White ◽  
Paul S. Kemp

2014 ◽  
Vol 40 ◽  
pp. 148-153 ◽  
Author(s):  
John M. Farrell ◽  
Kevin L. Kapuscinski ◽  
H. Brian Underwood

2021 ◽  
Author(s):  
Shyam M. Thomas ◽  
Stephanie J. Melles ◽  
Satyendra P. Bhavsar

Bioaccumulation of mercury in sport fish is a complex process that varies in space and time. Both large-scale climatic as well as fine-scale environmental factors are drivers of these space-time variations. In this study, we avail a long-running monitoring program from Ontario, Canada to better understand spatiotemporal variations in fish mercury bioaccumulation at two distinct scales. Focusing on two common large-bodied sport fishes (Walleye and Northern Pike), the data were analyzed at fine- and broad-scales, where fine-scale implies variations in bioaccumulation at waterbody- and year-level and broad-scale captures variations across 3 latitudinal zones (~5° each) and eight time periods (~5-year each). A series of linear mixed-effects models (LMEMs) were employed to capture the spatial, temporal and spatiotemporal variations in mercury bioaccumulation. Fine-scale models were overall better fit than broad-scale models suggesting environmental factors operating at the waterbody-level and annual climatic conditions matter most. Moreover, for both scales, the space time interaction explained most of the variation. The random slopes from the best-fitting broad-scale model were used to define a bioaccumulation index that captures trends within a climate change context. The broad-scale trends suggests of multiple and potentially conflicting climate-driven mechanisms. Interestingly, broad-scale temporal trends showed contrasting bioaccumulation patterns—increasing in Northern Pike and decreasing in Walleye, thus suggesting species-specific ecological differences also matter. Overall, by taking a scale-specific approach, the study highlights the overwhelming influence of fine-scale variations and their interactions on mercury bioaccumulation; while at broad-scale the mercury bioaccumulation trends are summarized within a climate change context.


2021 ◽  
Author(s):  
Shyam M. Thomas ◽  
Stephanie J. Melles ◽  
Satyendra P. Bhavsar

Bioaccumulation of mercury in sport fish is a complex process that varies in space and time. Both large-scale climatic as well as fine-scale environmental factors are drivers of these space-time variations. In this study, we avail a long-running monitoring program from Ontario, Canada to better understand spatiotemporal variations in fish mercury bioaccumulation at two distinct scales. Focusing on two common large-bodied sport fishes (Walleye and Northern Pike), the data were analyzed at fine- and broad-scales, where fine-scale implies variations in bioaccumulation at waterbody- and year-level and broad-scale captures variations across 3 latitudinal zones (~5° each) and eight time periods (~5-year each). A series of linear mixed-effects models (LMEMs) were employed to capture the spatial, temporal and spatiotemporal variations in mercury bioaccumulation. Fine-scale models were overall better fit than broad-scale models suggesting environmental factors operating at the waterbody-level and annual climatic conditions matter most. Moreover, for both scales, the space time interaction explained most of the variation. The random slopes from the best-fitting broad-scale model were used to define a bioaccumulation index that captures trends within a climate change context. The broad-scale trends suggests of multiple and potentially conflicting climate-driven mechanisms. Interestingly, broad-scale temporal trends showed contrasting bioaccumulation patterns—increasing in Northern Pike and decreasing in Walleye, thus suggesting species-specific ecological differences also matter. Overall, by taking a scale-specific approach, the study highlights the overwhelming influence of fine-scale variations and their interactions on mercury bioaccumulation; while at broad-scale the mercury bioaccumulation trends are summarized within a climate change context.


Author(s):  
Charlene da Silva ◽  
Sven E. Kerwath ◽  
Henning Winker ◽  
Stephen J. Lamberth ◽  
Colin G. Attwood ◽  
...  

2011 ◽  
Vol 68 (8) ◽  
pp. 1435-1453 ◽  
Author(s):  
Osvaldo J. Sepulveda-Villet ◽  
Carol A. Stepien

Discerning the genetic basis underlying fine-scale population structure of exploited native species and its relationship to management units is a critical goal for effective conservation. This study provides the first high-resolution genetic test of fine-scale relationships among spawning groups of the yellow perch Perca flavescens . Lake Erie yellow perch stocks comprise valuable sport and commercial fisheries and have fluctuated extensively owing to highly variable annual recruitment patterns. Fifteen nuclear DNA microsatellite loci are analyzed for 569 individuals from 13 primary Lake Erie spawning sites and compared with those spawning in Lakes St. Clair and Ontario. Additional comparisons test for possible genetic differences between sexes and among size–age cohorts. Results demonstrate that yellow perch spawning groups in Lake Erie are genetically distinguishable and do not differ between sexes and among age cohorts. Population genetic structure does not follow a genetic isolation with geographic distance pattern, and some spawning groups contribute more to overall lake-wide genetic diversity than do others. Partitioning of the yellow perch’s genetic structure shows little congruence to lake basins or to current management units. Our findings underlie the importance of understanding spawning habitat and behavior to conserve the genetic stock structure of a key fishery.


Wetlands ◽  
1992 ◽  
Vol 12 (3) ◽  
pp. 171-177 ◽  
Author(s):  
John E. Navarro ◽  
David L. Johnson
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document