Recent advancements in synthesis, properties, and applications of conductive polymers for electrochemical energy storage devices: A review

Author(s):  
Md Gulam Sumdani ◽  
Muhammad Remanul Islam ◽  
Ahmad Naim A. Yahaya ◽  
Sairul Izwan Safie
Author(s):  
Xiaoqin Li ◽  
Xiaojuan Chen ◽  
Zhaoyu Jin ◽  
Panpan Li ◽  
Dan Xiao

Conductive polymers endow fiber-shaped electrodes and devices with excellent mechanical and electrochemical performance for energy storage in future wearable electronics.


Author(s):  
Dhanasekar Kesavan ◽  
Vimal Kumar Mariappan ◽  
Karthikeyan Krishnamoorthy ◽  
Sang-Jae Kim

In this study, we report a facile carbothermal method for the preparation of boron-oxy-carbide (BOC) nanostructures and explore their properties towards electrochemical energy storage devices.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4000
Author(s):  
Eunhwan Kim ◽  
Juyeon Han ◽  
Seokgyu Ryu ◽  
Youngkyu Choi ◽  
Jeeyoung Yoo

For decades, improvements in electrolytes and electrodes have driven the development of electrochemical energy storage devices. Generally, electrodes and electrolytes should not be developed separately due to the importance of the interaction at their interface. The energy storage ability and safety of energy storage devices are in fact determined by the arrangement of ions and electrons between the electrode and the electrolyte. In this paper, the physicochemical and electrochemical properties of lithium-ion batteries and supercapacitors using ionic liquids (ILs) as an electrolyte are reviewed. Additionally, the energy storage device ILs developed over the last decade are introduced.


2017 ◽  
Vol 8 (5) ◽  
pp. 1701681 ◽  
Author(s):  
Bei Long ◽  
Muhammad-Sadeeq Balogun ◽  
Lei Luo ◽  
Weitao Qiu ◽  
Yang Luo ◽  
...  

2017 ◽  
Vol 4 (16) ◽  
pp. 1700279 ◽  
Author(s):  
Jia Yu ◽  
Chao Mu ◽  
Xinyu Qin ◽  
Chao Shen ◽  
Bingyi Yan ◽  
...  

2022 ◽  
Vol 9 ◽  
Author(s):  
Adriana M. Navarro-Suárez ◽  
Milo S. P. Shaffer

Structural energy storage devices (SESDs), designed to simultaneously store electrical energy and withstand mechanical loads, offer great potential to reduce the overall system weight in applications such as automotive, aircraft, spacecraft, marine and sports equipment. The greatest improvements will come from systems that implement true multifunctional materials as fully as possible. The realization of electrochemical SESDs therefore requires the identification and development of suitable multifunctional structural electrodes, separators, and electrolytes. Different strategies are available depending on the class of electrochemical energy storage device and the specific chemistries selected. Here, we review existing attempts to build SESDs around carbon fiber (CF) composite electrodes, including the use of both organic and inorganic compounds to increase electrochemical performance. We consider some of the key challenges and discuss the implications for the selection of device chemistries.


Sign in / Sign up

Export Citation Format

Share Document