Isothiourea‐based lewis pairs for homopolymerization and copolymerization of 2,2‐dimethyltrimethylene carbonate with ε‐caprolactone and ω‐pentadecalactone

2019 ◽  
Vol 57 (23) ◽  
pp. 2349-2355
Author(s):  
Jun‐Hua Bai ◽  
Jin‐Hua Wang ◽  
Li‐Fang Zhang
Keyword(s):  
2021 ◽  
Author(s):  
Deborah Hartmann ◽  
Sven Braner ◽  
Lutz Greb

Bis(perchlorocatecholato)silane and bidentate N,N- or N,P-heteroleptic donors form hexacoordinated complexes. Depending on the ring strain and hemilability in the adducts, Frustrated Lewis pair reactivity with aldehydes and catalytic ammonia borane...


2021 ◽  
Author(s):  
Fang Ge ◽  
Sun Li ◽  
Zhe Wang ◽  
Wenzhong Zhang ◽  
Xiaowu Wang

Developing different synthetic approaches to realize controlled or living polymerization are aspirational to achieve polymers with defined molecular weight, narrow molecular weight distribution and unambiguous structures by polymer chemists. Herein,...


2021 ◽  
Vol 03 (02) ◽  
pp. 174-183
Author(s):  
P. Chidchob ◽  
S. A. H. Jansen ◽  
S. C. J. Meskers ◽  
E. Weyandt ◽  
N. P. van Leest ◽  
...  

The introduction of a chemical additive to supramolecular polymers holds high potential in the development of new structures and functions. In this regard, various donor- and acceptor-based molecules have been applied in the design of these noncovalent polymers. However, the incorporation of boron–nitrogen frustrated Lewis pairs in such architectures is still rare despite their many intriguing properties in catalysis and materials science. The limited choices of suitable boron derivatives represent one of the main limitations for the advancement in this direction. Here, we examine the use of the commercially available tris(pentafluorophenyl)borane with various triphenylamine derivatives to create supramolecular B–N charge transfer systems. Our results highlight the importance of a proper balance between the donor/acceptor strength and the driving force for supramolecular polymerization to achieve stable, long-range ordered B–N systems. Detailed analyses using electron paramagnetic resonance and optical spectroscopy suggest that tris(pentafluorophenyl)borane displays complex behavior with the amide-based triphenylamine supramolecular polymers and may interact in dimers or larger chiral aggregates, depending on the specific structure of the triphenylamines.


2019 ◽  
Vol 55 (5) ◽  
pp. 675-678 ◽  
Author(s):  
Jorge Juan Cabrera-Trujillo ◽  
Israel Fernández

Herein we introduce a novel concept in FLP chemistry: aromaticity as the key factor enhancing the reactivity of FLPs.


2011 ◽  
Vol 2 (9) ◽  
pp. 1842 ◽  
Author(s):  
Sina Schwendemann ◽  
Roland Fröhlich ◽  
Gerald Kehr ◽  
Gerhard Erker
Keyword(s):  

2010 ◽  
Vol 46 (47) ◽  
pp. 8947 ◽  
Author(s):  
Jason G. M. Morton ◽  
Meghan A. Dureen ◽  
Douglas W. Stephan

Author(s):  
R. Morris Bullock ◽  
Geoffrey M. Chambers

This perspective examines frustrated Lewis pairs (FLPs) in the context of heterolytic cleavage of H 2 by transition metal complexes, with an emphasis on molecular complexes bearing an intramolecular Lewis base. FLPs have traditionally been associated with main group compounds, yet many reactions of transition metal complexes support a broader classification of FLPs that includes certain types of transition metal complexes with reactivity resembling main group-based FLPs. This article surveys transition metal complexes that heterolytically cleave H 2 , which vary in the degree that the Lewis pairs within these systems interact. Many of the examples include complexes bearing a pendant amine functioning as the base with the metal functioning as the hydride acceptor. Consideration of transition metal compounds in the context of FLPs can inspire new innovations and improvements in transition metal catalysis. This article is part of the themed issue ‘Frustrated Lewis pair chemistry’.


Sign in / Sign up

Export Citation Format

Share Document