Development of Molecularly Imprinted Polymer‐Based Optical Sensor for the Sensitive Penicillin G Detection in Milk

2021 ◽  
Vol 6 (43) ◽  
pp. 11865-11875
Author(s):  
Volkan Safran ◽  
Ilgım Göktürk ◽  
Monireh Bakhshpour ◽  
Fatma Yılmaz ◽  
Adil Denizli
2017 ◽  
Vol 27 ◽  
pp. 299-300 ◽  
Author(s):  
Marcos Vinicius Foguel ◽  
Natacha Thaisa Bello Pedro ◽  
Maria Valnice Boldrin Zanoni ◽  
Maria del Pilar Taboada Sotomayor

2003 ◽  
Vol 5 (1) ◽  
pp. 67-72 ◽  
Author(s):  
Josefine Cederfur ◽  
Yuxin Pei ◽  
Meng Zihui ◽  
Maria Kempe

Biomimetics ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 72
Author(s):  
Monireh Bakhshpour ◽  
Ilgım Göktürk ◽  
Nilay Bereli ◽  
Fatma Yılmaz ◽  
Adil Denizli

Molecularly imprinted polymer-based surface plasmon resonance sensor prepared using silver nanoparticles was designed for the selective recognition of Penicillin G (PEN-G) antibiotic from both aqueous solution and milk sample. PEN-G imprinted sensors (NpMIPs) SPR sensor was fabricated using poly (2-hydroxyethyl methacrylate-N-methacroyl-(L)-cysteine methyl ester)-silver nanoparticles-N-methacryloyl-L-phenylalanine methyl ester polymer by embedding silver nanoparticles (AgNPs) into the polymeric film structure. In addition, a non-imprinted (NpNIPs) SPR sensor was prepared by utilizing the same polymerization recipe without addition of the PEN-G template molecule to evaluate the imprinting effect. FTIR-ATR spectrophotometer, ellipsometer, contact angle measurements were used for the characterization of NpMIPs SPR sensors. The linear concentration range of 0.01–10 ng/mL PEN-G was studied for kinetic analyses. The augmenting effect of AgNPs used to increase the surface plasmon resonance signal response was examined using polymer-based PEN-G imprinted (MIPs) sensor without the addition of AgNPs. The antibiotic amount present in milk chosen as a real sample was measured by spiking PEN-G into the milk. According to the Scatchard, Langmuir, Freundlich and Langmuir–Freundlich adsorption models, the interaction mechanism was estimated to be compatible with the Langmuir model.


Sign in / Sign up

Export Citation Format

Share Document